High-Throughput Automated Preparation and Simulation of Membrane Proteins with HTMD.

HTMD is a programmable scientific platform intended to facilitate simulation-based research in molecular systems. This paper presents the functionalities of HTMD for the preparation of a molecular dynamics simulation starting from PDB structures, building the system using well-known force fields, and applying standardized protocols for running the simulations. We demonstrate the framework's flexibility for high-throughput molecular simulations by applying a preparation, building, and simulation protocol with multiple force-fields on all of the seven hundred eukaryotic membrane proteins resolved to-date from the orientation of proteins in membranes (OPM) database. All of the systems are available on www.playmolecule.org .

[1]  Toni Giorgino,et al.  PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations , 2017, J. Chem. Inf. Model..

[2]  Diwakar Shukla,et al.  OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. , 2013, Journal of chemical theory and computation.

[3]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[4]  Ron O. Dror,et al.  Mechanism of Voltage Gating in Potassium Channels , 2012, Science.

[5]  John D. Chodera,et al.  Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale , 2015, bioRxiv.

[6]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[7]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[8]  Frank Noé,et al.  Crystal structure of the dynamin tetramer , 2015, Nature.

[9]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[10]  Wei Chen,et al.  Recent development and application of constant pH molecular dynamics , 2014, Molecular simulation.

[11]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[12]  R. Altman,et al.  Cloud-based simulations on Google Exacycle reveal ligand-modulation of GPCR activation pathways , 2013, Nature chemistry.

[13]  R Dustin Schaeffer,et al.  Dynameomics: a comprehensive database of protein dynamics. , 2010, Structure.

[14]  Gert Vriend,et al.  YASARA View—molecular graphics for all devices—from smartphones to workstations , 2014, Bioinform..

[15]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[16]  Frank Noé,et al.  HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. , 2016, Journal of chemical theory and computation.

[17]  David P. Anderson,et al.  High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing , 2010, J. Chem. Inf. Model..

[18]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[19]  Gianni De Fabritiis,et al.  Kinetic modulation of a disordered protein domain by phosphorylation , 2014, Nature Communications.

[20]  Michael T. Zimmermann,et al.  Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing , 2017, PloS one.

[21]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[22]  Pengyu Y. Ren,et al.  The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. , 2013, Journal of chemical theory and computation.

[23]  Modesto Orozco,et al.  MoDEL (Molecular Dynamics Extended Library): a database of atomistic molecular dynamics trajectories. , 2010, Structure.

[24]  Maarten G. Wolf,et al.  g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation , 2010, J. Comput. Chem..

[25]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[26]  Alexander S. Rose,et al.  NGL Viewer: a web application for molecular visualization , 2015, Nucleic Acids Res..

[27]  G. de Fabritiis,et al.  Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations , 2011, Proceedings of the National Academy of Sciences.

[28]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[29]  M J Harvey,et al.  ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.

[30]  Christian Kandt,et al.  Setting up and running molecular dynamics simulations of membrane proteins. , 2007, Methods.

[31]  A. Cavalli,et al.  Role of Molecular Dynamics and Related Methods in Drug Discovery. , 2016, Journal of medicinal chemistry.

[32]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[33]  Federico D. Sacerdoti,et al.  Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[34]  Pedro B. P. S. Reis,et al.  pK(a) Values of Titrable Amino Acids at the Water/Membrane Interface. , 2016, Journal of chemical theory and computation.

[35]  David E. Shaw,et al.  The future of molecular dynamics simulations in drug discovery , 2011, Journal of Computer-Aided Molecular Design.

[36]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[37]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[38]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[39]  R. Dror,et al.  How Fast-Folding Proteins Fold , 2011, Science.

[40]  Modesto Orozco,et al.  MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations , 2012, Bioinform..

[41]  Gerhard Klebe,et al.  PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations , 2007, Nucleic Acids Res..

[42]  Toni Giorgino,et al.  Drug Discovery and Molecular Dynamics: Methods, Applications and Perspective Beyond the Second Timescale. , 2017, Current topics in medicinal chemistry.