Dynamic thermal modelling of power transformers

The aim of this paper is to introduce hot-spot and top-oil temperature thermal models for more accurate temperature calculations during transient states based on data received in a normal heat run test (i.e., the top oil in the tank of the transformer and the average winding-to-average oil gradient). Oil viscosity changes and loss variation with temperature are taken into account. The new thermal models will be validated using experimental (fiber-optic test) results obtained at varying load current on a 250-MVA-ONAF-cooled unit, a 400-MVA-ONAF-cooled unit and a 605-MVA-OFAF-cooled unit. The results are also compared with the IEEE-Loading guide (1995) Annex G method.

[1]  Ieee Standards Board IEEE guide for the interpretation of gases generated in oil-immersed transformers , 1992 .

[2]  G. Swift,et al.  Adaptive Transformer Thermal Overload Protection , 2001, IEEE Power Engineering Review.

[3]  Q. H. Wu,et al.  Equivalent heat circuit based power transformer thermal model , 2002 .

[4]  L. W. Pierce Predicting liquid filled transformer loading capability , 1992, [1992] Record of Conference Papers Industry Applications Society 39th Annual Petroleum and Chemical Industry Conference.

[5]  R. E. Doherty,et al.  Effect of Altitude on Temperature Rise , 1924, Transactions of the American Institute of Electrical Engineers.

[6]  V. M. Montsinger,et al.  Overloading of power transformers , 1934, Electrical Engineering.

[7]  V. M. Montsinger Effect of barometric pressure on temperature rise of self-cooled stationary induction apparatus , 1916, Proceedings of the American Institute of Electrical Engineers.

[8]  G. C. Stevens,et al.  Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers , 1994 .

[9]  G. Swift,et al.  A fundamental approach to transformer thermal modeling. I. Theory and equivalent circuit , 2001 .

[10]  Y. Langhame,et al.  Effect of oil viscosity on transformer loading capability at low ambient temperatures , 1992 .

[11]  H. Nordman,et al.  Temperature Responses to Step Changes in the Load Current of Power Transformers , 2002, IEEE Power Engineering Review.

[12]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[13]  Matti Lehtonen,et al.  Dynamic thermal modelling of distribution transformers , 2005 .

[14]  L. W. Pierce An investigation of the thermal performance of an oil filled transformer winding , 1992 .

[15]  Zoran Radakovic,et al.  A new method for the calculation of the hot-spot temperature in power transformers with ONAN cooling , 2003 .

[16]  May Carballeira HPLC contribution to transformer survey during service or heat run tests , 1991 .

[17]  R. Grubb,et al.  A Transformer Thermal Duct Study of Various Insulating Fluids , 1981, IEEE Transactions on Power Apparatus and Systems.

[18]  J. Declercq,et al.  Accurate hot spot modeling in a power transformer leading to improved design and performance , 1999, 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333).

[19]  László Kiss,et al.  Large Power Transformers , 1987 .

[20]  Z. Radaković,et al.  Results of a novel algorithm for the calculation of the characteristic temperatures in power oil transformers , 1997 .

[21]  K. Feser,et al.  NEW DEVELOPMENTS IN TRANSFORMER COOLING CALCULATIONS , .

[22]  M. Baelmans,et al.  New perspectives to overloading with accurate modeling of thermal transients in oil-immersed power transformers , 2001, 2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat. No.01CH37294).

[23]  Edward J. Kelly,et al.  Oil-Immersed Power Transformer Overload Calculations by Computer , 1969 .

[24]  P. J. Griffin,et al.  Real-Time Dynamic Loading and Thermal Diagnostic of Power Transformers , 2002, IEEE Power Engineering Review.

[25]  M. V. Thaden,et al.  Temperature rise tests on a forced-oil-air cooled (FOA) (OFAF) core-form transformer, including loading beyond nameplate , 1995 .

[26]  M. P. Saravolac The use of optic fibres for temperature monitoring in power transformers , 1994 .

[27]  G. Swift,et al.  Risk assessment using transformer loss of life data , 2004, IEEE Electrical Insulation Magazine.

[28]  M. Stach,et al.  Assessment of overload capacity of power transformers by on-line monitoring systems , 2001, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[29]  G. Swift,et al.  Transient transformer overload ratings and protection , 2004, IEEE Electrical Insulation Magazine.

[30]  T. Leibfried,et al.  Online monitors keep transformers in service , 1998 .

[31]  Matti Lehtonen,et al.  Dynamic thermal modelling of power transformers , 2004 .

[32]  R. S. Girgis,et al.  Calculation of Core Hot-Spot Temperature in Power and Distribution Transformers , 2002, IEEE Power Engineering Review.

[33]  W.H. Tang,et al.  A simplified transformer thermal model based on thermal-electric analogy , 2004, IEEE Transactions on Power Delivery.

[34]  G. Swift,et al.  A fundamental approach to transformer thermal modeling. II. Field verification , 2001 .

[35]  M. K. Domun Condition monitoring of power transformers , 1990 .

[36]  V. M. Montsinger,et al.  Temperature Rise of Stationary Electrical Apparatus as Influenced by Radiation, Convection and Altitude , 1924, Transactions of the American Institute of Electrical Engineers.

[37]  W. Z. Black,et al.  Real-time thermal model for an oil-immersed, forced-air cooled transformer , 1990 .

[38]  T. S. Ramu,et al.  Prediction of hottest spot temperature (HST) in power and station transformers , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[39]  S. Ryder,et al.  A Simple Method for Calculating Winding Temperature Gradient in Power Transformers , 2002, IEEE Power Engineering Review.

[40]  James L. Kirtley,et al.  An improved transformer top oil temperature model for use in an on-line monitoring and diagnostic system , 1997 .

[41]  S. R. Lindgren,et al.  Bubble evolution from transformer overload , 2001, 2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat. No.01CH37294).

[42]  Matti Lehtonen,et al.  New aspects on the dynamic loading of power transformers , 2002 .

[43]  V. M. Montsinger,et al.  Effect of Color of Tank on the Temperature of Self-Cooled Transformers under Service Conditions , 1930, Transactions of the American Institute of Electrical Engineers.

[44]  Antonio Pietrosanto,et al.  An enhanced fiber-optic temperature sensor system for power transformer monitoring , 2001, IEEE Trans. Instrum. Meas..

[45]  D. Harrison Loading capabilities of large power transformers , 1995 .

[46]  L. W. Pierce,et al.  A thermal model for optimized distribution and small power transformer design , 1999, 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333).

[47]  Z. Radakovic,et al.  Numerical Determination of Characteristic Temperatures in Directly Loaded Power Oil Transformer , 2003 .

[48]  K. Feser,et al.  Condition monitoring system for power transformers , 2000, PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409).

[49]  D. Chu,et al.  On-line monitoring of power transformers and components: a review of key parameters , 1999, Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No.99CH37035).

[50]  E. A. Simonson,et al.  Thermal capability assessment for transformers , 1995 .

[51]  R. Morin,et al.  Distribution transformer overloading capability under cold-load pickup conditions , 1990 .

[52]  M. Hyvarinen,et al.  Temperature rises in an OFAF transformer at OFAN cooling mode in service , 2005, IEEE Transactions on Power Delivery.

[53]  Q. H. Wu,et al.  Implementation of a power transformer temperature monitoring system , 2002 .

[54]  Tapan Kumar Saha,et al.  Review of modern diagnostic techniques for assessing insulation condition in aged transformers , 2003 .