Adaptive synchronization design for uncertain chaotic systems in the presence of unknown system parameters: a revisit

Recently the synchronization control for chaotic systems with unknown parameters has attracted great attention among the researchers and diverse synchronization schemes have been reported in the literature. In this review article, we carefully revisit several recent articles published from 2010 to the present and find that several reported schemes are problematic. The imperfect synchronization schemes are categorized into five cases according to their defect types. By providing a general theorem for the adaptive synchronization design, we further present modified schemes to correct the defects in these articles. In addition, we have emphasized the significant linear independence condition for ensuring successful identification, as this condition has been neglected in several previous articles. We also summarize three cases when this condition is not valid, and accordingly four approaches are proposed to guarantee the successful parameter estimation for uncertain chaotic systems.

[1]  Jianping Cai Comment on “Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters” , 2010 .

[2]  Haipeng Peng,et al.  Parameter identification and projective synchronization between different chaotic systems. , 2009, Chaos.

[3]  Li-Wei Ko,et al.  Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy , 2012, Nonlinear Dynamics.

[4]  Jinde Cao,et al.  New communication schemes based on adaptive synchronization. , 2007, Chaos.

[5]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[6]  Yixian Yang,et al.  Conditions of parameter identification from time series. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  M. Noorani,et al.  Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters , 2010 .

[8]  Jing Bai,et al.  Modified projective synchronization of uncertain fractional order hyperchaotic systems , 2012 .

[9]  Xingyuan Wang,et al.  Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters , 2011 .

[10]  Liang Chen,et al.  Synchronization: An Obstacle to Identification of Network Topology , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Zuolei Wang,et al.  Adaptive Q–S synchronization of non-identical chaotic systems with unknown parameters , 2010 .

[12]  Chi-Ching Yang,et al.  Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller , 2011 .

[13]  Ljupco Kocarev,et al.  Cryptanalysis of Chaotic Communication Schemes by Dynamical Minimization Algorithm , 2009, Int. J. Bifurc. Chaos.

[14]  M. Mossa Al-sawalha,et al.  Adaptive anti-synchronization of chaotic systems with fully unknown parameters , 2010, Comput. Math. Appl..

[15]  Hongtao Lu,et al.  Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters , 2011 .

[16]  J. Kurths,et al.  Parameter estimation based synchronization for an epidemic model with application to tuberculosis in Cameroon , 2010 .

[17]  Xiaoshan Zhao,et al.  The parametric synchronization scheme of chaotic system , 2011 .

[18]  M. Noorani,et al.  Adaptive reduced-order anti-synchronization of chaotic systems with fully unknown parameters , 2010 .

[19]  Maciej Ogorzalek,et al.  Identification of chaotic systems based on adaptive synchronization , 1997 .

[20]  L. Illing,et al.  Multi-parameter identification from scalar time series generated by a Malkus-Lorenz water wheel. , 2012, Chaos.

[21]  Yuhua Xu,et al.  Adaptive synchronization of uncertain chaotic systems with adaptive scaling function , 2011, J. Frankl. Inst..

[22]  Le Hoa Nguyen,et al.  Adaptive synchronization of two coupled chaotic Hindmarsh-Rose neurons by controlling the membrane potential of a slave neuron , 2013 .

[23]  Zhi-Hong Guan,et al.  Adaptive synchronization for Chen chaotic system with fully unknown parameters , 2004 .

[24]  Brian D. O. Anderson,et al.  Adaptive systems, lack of persistency of excitation and bursting phenomena , 1985, Autom..

[25]  Gangquan Si,et al.  Comment on: “Topology identification and adaptive synchronization of uncertain complex networks with adaptive double scaling functions” [Commun Nonlinear Sci Numer Simul 2011;16:3337–43] , 2012 .

[26]  Ying Liu,et al.  Cryptanalysis of a chaotic communication scheme using adaptive observer. , 2008, Chaos.

[27]  Hongtao Lu,et al.  Generalized projective lag synchronization between different hyperchaotic systems with uncertain parameters , 2011 .

[28]  Junan Lu,et al.  Structure identification of uncertain general complex dynamical networks with time delay , 2009, Autom..

[29]  Wu Xiang-Jun,et al.  A new chaotic communication scheme based on adaptive synchronization. , 2006, Chaos.

[30]  Xiangjun Wu,et al.  Dynamics analysis and hybrid function projective synchronization of a new chaotic system , 2012 .

[31]  Francesco Sorrentino,et al.  Estimation of communication-delays through adaptive synchronization of chaos , 2011, 1109.5126.

[32]  Jian-An Fang,et al.  Lag synchronization of a class of chaotic systems with unknown parameters , 2009 .

[33]  Karl E. Lonngren,et al.  Multi-switching synchronization of chaotic systems with active controllers , 2008 .

[34]  Yixian Yang,et al.  Parameter Identification and Synchronization of Dynamical System by Introducing an Auxiliary Subsystem , 2010 .

[35]  M. T. Yassen,et al.  Adaptive Modified Function Projective Synchronization between Two Different Hyperchaotic Dynamical Systems , 2012 .

[36]  Haipeng Peng,et al.  Identifying topology of synchronous networks by analyzing their transient processes , 2012 .

[37]  Andrew Chi Sing Leung,et al.  Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control , 2011 .

[38]  Jianfeng Feng,et al.  Adaptive identification of time delays in nonlinear dynamical models. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Jinhu Lu,et al.  Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .

[40]  Shih-Yu Li,et al.  Pragmatical adaptive synchronization of different orders chaotic systems with all uncertain parameters via nonlinear control , 2011 .

[41]  Kecun Zhang,et al.  A general scheme for Q-S synchronization of chaotic systems with unknown parameters and scaling functions , 2010, Appl. Math. Comput..

[42]  Song Zheng,et al.  Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters , 2010 .

[43]  Chi-Ching Yang Exponential synchronization of a new Lorenz-like attractor with uncertain parameters via single input , 2011, Appl. Math. Comput..

[44]  Zuolei Wang,et al.  Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters , 2009 .

[45]  Zuolei Wang Projective synchronization of hyperchaotic Lü system and Liu system , 2010 .

[46]  Wei Lin,et al.  Failure of parameter identification based on adaptive synchronization techniques. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Gangquan Si,et al.  Adaptive modified function projective synchronization and parameter identification of uncertain hyperchaotic (chaotic) systems with identical or non-identical structures , 2011, Nonlinear Dynamics.

[48]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[49]  Mehdi Roopaei,et al.  Review article on adaptive synchronization of chaotic systems with unknown parameters , 2011 .

[50]  Wei Lin,et al.  Nonlinear adaptive synchronization rule for identification of a large amount of parameters in dynamical models , 2009 .

[51]  Tao Ren,et al.  Q–S synchronization between chaotic systems with double scaling functions , 2010 .