Architectures for block Toeplitz systems

In this paper efficient VLSI architectures of highly concurrent algorithms for the solution of block linear systems with Toeplitz or near-to-Toeplitz entries are presented. The main features of the proposed scheme are the use of scalar only operations, multiplications/divisions and additions, and the local communication which enables the development of wavefront array architecture. Both the mean squared error and the total squared error formulations are described and a variety of implementations are given.

[1]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[2]  A. D. Lopez,et al.  A 6.75 ns 16*16 bit multiplier in single-level-metal CMOS technology , 1989 .

[3]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[4]  George-Othon Glentis,et al.  Efficient order recursive algorithms for multichannel least squares filtering , 1992, IEEE Trans. Signal Process..

[5]  Peter Strobach Recursive triangular array ladder algorithms , 1991, IEEE Trans. Signal Process..

[6]  Sun-Yuan Kung,et al.  A highly concurrent algorithm and pipeleined architecture for solving Toeplitz systems , 1983 .

[7]  E. Robinson,et al.  Recursive solution to the multichannel filtering problem , 1965 .

[8]  Sergios Theodoridis,et al.  Parallel implementation of efficient LS algorithms for filtering and prediction , 1987, IEEE Trans. Acoust. Speech Signal Process..

[9]  F.J. Taylor,et al.  Multiplier policies for digital signal processing , 1990, IEEE ASSP Magazine.

[10]  M. J. R. Healy,et al.  Multichannel Time Series Analysis with Digital Computer Programs. , 1978 .

[11]  X.-H. Yu,et al.  Efficient block implementation of exact sequential least-squares problems , 1988, IEEE Trans. Acoust. Speech Signal Process..

[12]  S. Kung,et al.  VLSI Array processors , 1985, IEEE ASSP Magazine.

[13]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[14]  George-Othon Glentis,et al.  Efficient solution of block linear systems with Toeplitz entries using a channel decomposition technique , 1994, Signal Process..

[15]  George-Othon Glentis,et al.  Efficient multichannel FIR filtering using a single step versatile order recursive algorithm , 1994, Signal Process..

[16]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[17]  B. Dickinson,et al.  Efficient solution of covariance equations for linear prediction , 1977 .

[18]  George-Othon Glentis,et al.  Efficient algorithms for the solution of block linear systems with Toeplitz entries , 1993 .

[19]  S. Treitel Principles of Digital Multichannel Filtering , 1970 .

[20]  I-Chang Jou,et al.  A novel implementation of pipelined Toeplitz system solver , 1986, Proceedings of the IEEE.

[21]  George Carayannis,et al.  Efficient recursive in order least squares FIR filtering and prediction , 1985, IEEE Trans. Acoust. Speech Signal Process..

[22]  Dan I. Moldovan,et al.  Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays , 1986, IEEE Transactions on Computers.