STRait Razor v2s: Advancing sequence-based STR allele reporting and beyond to other marker systems.

[1]  S. Harbison,et al.  Massively parallel sequencing for the forensic scientist – sequencing archived amplified products of AmpFlSTR Identifiler and PowerPlex Y multiplex kits to capture additional information , 2017 .

[2]  Bruce Budowle,et al.  Flanking region variation of ForenSeq™ DNA Signature Prep Kit STR and SNP loci in Yavapai Native Americans. , 2017, Forensic science international. Genetics.

[3]  Titia Sijen,et al.  FDSTools: A software package for analysis of massively parallel sequencing data with the ability to recognise and correct STR stutter and other PCR or sequencing noise. , 2017, Forensic science international. Genetics.

[4]  B. Ludes,et al.  Case report: on the use of the HID-Ion AmpliSeq™ Ancestry Panel in a real forensic case , 2017, International Journal of Legal Medicine.

[5]  Bruce Budowle,et al.  Characterization of genetic sequence variation of 58 STR loci in four major population groups. , 2016, Forensic science international. Genetics.

[6]  David H. Warshauer,et al.  Massively parallel sequencing of 68 insertion/deletion markers identifies novel microhaplotypes for utility in human identity testing. , 2016, Forensic science international. Genetics.

[7]  Niels Morling,et al.  ISO 17025 validation of a next‐generation sequencing assay for relationship testing , 2016, Electrophoresis.

[8]  Jennifer D. Churchill,et al.  More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel DNA sequencing , 2016, BMC Genomics.

[9]  Douglas R Storts,et al.  Massively parallel sequencing of short tandem repeats-Population data and mixture analysis results for the PowerSeq™ system. , 2016, Forensic science international. Genetics.

[10]  Bruce Budowle,et al.  Genetic analysis of the Yavapai Native Americans from West-Central Arizona using the Illumina MiSeq FGx™ forensic genomics system. , 2016, Forensic science international. Genetics.

[11]  W Parson,et al.  D5S2500 is an ambiguously characterized STR: Identification and description of forensic microsatellites in the genomics age. , 2016, Forensic science international. Genetics.

[12]  W. Parson,et al.  Inter-laboratory evaluation of the EUROFORGEN Global ancestry-informative SNP panel by massively parallel sequencing using the Ion PGM™. , 2016, Forensic science international. Genetics.

[13]  K. Kidd Proposed nomenclature for microhaplotypes , 2016, Human Genomics.

[14]  In Seok Yang,et al.  Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons. , 2016, Forensic science international. Genetics.

[15]  Bruce Budowle,et al.  Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. , 2016, Forensic science international. Genetics.

[16]  Salata Elena,et al.  Revealing the challenges of low template DNA analysis with the prototype Ion AmpliSeq™ Identity panel v2.3 on the PGM™ Sequencer. , 2016, Forensic science international. Genetics.

[17]  Jennifer D. Churchill,et al.  Effects of the Ion PGM™ Hi-Q™ sequencing chemistry on sequence data quality , 2016, International Journal of Legal Medicine.

[18]  Niels Morling,et al.  Introduction of the Python script STRinNGS for analysis of STR regions in FASTQ or BAM files and expansion of the Danish STR sequence database to 11 STRs. , 2016, Forensic science international. Genetics.

[19]  Peter M Vallone,et al.  Sequence variation of 22 autosomal STR loci detected by next generation sequencing. , 2016, Forensic science international. Genetics.

[20]  Bruce Budowle,et al.  Empirical testing of a 23-AIMs panel of SNPs for ancestry evaluations in four major US populations , 2016, International Journal of Legal Medicine.

[21]  Rachel A. Aponte,et al.  The next dimension in STR sequencing: Polymorphisms in flanking regions and their allelic associations , 2015 .

[22]  Michael D. Coble,et al.  Sequence-based analysis of stutter at STR loci: Characterization and utility , 2015 .

[23]  K. Kidd,et al.  Genetic markers for massively parallel sequencing in forensics , 2015 .

[24]  Bruce Budowle,et al.  An evaluation of the PowerSeq™ Auto System: A multiplex short tandem repeat marker kit compatible with massively parallel sequencing. , 2015, Forensic science international. Genetics.

[25]  W. Barris,et al.  SNP discovery in nonmodel organisms: strand bias and base‐substitution errors reduce conversion rates , 2015, Molecular ecology resources.

[26]  W Parson,et al.  Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM™. , 2015, Forensic science international. Genetics.

[27]  Bruce Budowle,et al.  High sensitivity multiplex short tandem repeat loci analyses with massively parallel sequencing. , 2015, Forensic science international. Genetics.

[28]  Dieter Deforce,et al.  Forensic massively parallel sequencing data analysis tool: Implementation of MyFLq as a standalone web- and Illumina BaseSpace(®)-application. , 2015, Forensic science international. Genetics.

[29]  K. Kidd,et al.  Criteria for selecting microhaplotypes: mixture detection and deconvolution , 2015, Investigative Genetics.

[30]  Bruce Budowle,et al.  Underlying Data for Sequencing the Mitochondrial Genome with the Massively Parallel Sequencing Platform Ion Torrent™ PGM™ , 2015, BMC Genomics.

[31]  C. Quince,et al.  Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform , 2015, Nucleic acids research.

[32]  K. Kidd,et al.  Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. , 2014, Forensic science international. Genetics.

[33]  Jeroen F. J. Laros,et al.  TSSV: a tool for characterization of complex allelic variants in pure and mixed genomes , 2014, Bioinform..

[34]  Duncan A. Taylor,et al.  Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats , 2014, Human mutation.

[35]  D. Deforce,et al.  My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing. , 2014, Forensic science international. Genetics.

[36]  W. Parson,et al.  Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)☆ , 2013, Forensic science international. Genetics.

[37]  Bruce Budowle,et al.  STRait Razor: a length-based forensic STR allele-calling tool for use with second generation sequencing data. , 2013, Forensic science international. Genetics.

[38]  David H. Warshauer,et al.  Single nucleotide polymorphism typing with massively parallel sequencing for human identification , 2013, International Journal of Legal Medicine.

[39]  Philip Hugenholtz,et al.  Shining a Light on Dark Sequencing: Characterising Errors in Ion Torrent PGM Data , 2013, PLoS Comput. Biol..

[40]  V. Castella,et al.  DIP–STR: Highly Sensitive Markers for the Analysis of Unbalanced Genomic Mixtures , 2013, Human mutation.

[41]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[42]  H. Swerdlow,et al.  A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers , 2012, BMC Genomics.

[43]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[44]  Niels Morling,et al.  High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform. , 2011, BioTechniques.

[45]  Margaret C. Linak,et al.  Sequence-specific error profile of Illumina sequencers , 2011, Nucleic acids research.

[46]  M. Pancorbo,et al.  SNPSTR rs59186128_D7S820 polymorphism distribution in European Caucasoid, Hispanic, and Afro-American populations , 2009, International Journal of Legal Medicine.

[47]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[48]  Herbert Oberacher,et al.  Increased forensic efficiency of DNA fingerprints through simultaneous resolution of length and nucleotide variability by high‐performance mass spectrometry , 2008, Human mutation.

[49]  Michael P. H. Stumpf,et al.  SNPSTR: a database of compound microsatellite-SNP markers , 2007, Nucleic Acids Res..

[50]  J. Mountain,et al.  Precision and accuracy of divergence time estimates from STR and SNPSTR variation. , 2004, Molecular biology and evolution.

[51]  Christopher Gignoux,et al.  SNPSTRs: empirically derived, rapidly typed, autosomal haplotypes for inference of population history and mutational processes. , 2002, Genome research.

[52]  Adrian Linacre,et al.  SEQ Mapper: A DNA sequence searching tool for massively parallel sequencing data. , 2017, Forensic science international. Genetics.

[53]  Bruce Budowle,et al.  Evaluation of the Illumina(®) Beta Version ForenSeq™ DNA Signature Prep Kit for use in genetic profiling. , 2016, Forensic science international. Genetics.

[54]  Bruce Budowle,et al.  STRait Razor v2.0: the improved STR Allele Identification Tool--Razor. , 2015, Forensic science international. Genetics.

[55]  Niels Morling,et al.  Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™. , 2015, Forensic science international. Genetics.

[56]  Nnamdi E. Ihuegbu,et al.  Microhaplotype loci are a powerful new type of forensic marker , 2013 .

[57]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[58]  Heng Li,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .