Mechanical properties of coated materials and multi-layered composites determined using bending methods

Relationships are presented to analyse the mechanical properties of multi-layered composites from experimental data of bending tests permitting a calculation of the modulus of rupture (MOR) for the failure of a particular layer within the composite. The proposed equations can also be used to determine the unknown elastic modulus or thickness for a layer within a multi-layered composite, if the respective properties of all other layers are known. Special consideration is given to the influence of coatings on substrate fracture.

[1]  N. Salamon,et al.  Geometrically Nonlinear Stress-Deflection Relations for Thin Film/Substrate Systems With a Finite Element Comparison , 1994 .

[2]  Subra Suresh,et al.  Small and large deformation of thick and thin-film multi-layers: Effects of layer geometry, plasticity and compositional gradients , 1996 .

[3]  John A. Nairn,et al.  Fracture mechanics analysis of coating/substrate systems Part I: Analysis of tensile and bending experiments , 2000 .

[4]  Christopher C. Berndt,et al.  Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. I: Four point bend test , 2000 .

[5]  N. Fleck,et al.  The plastic collapse of sandwich beams with a metallic foam core , 2001 .

[6]  Timothy A. Brunner,et al.  Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate , 1987 .

[7]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[8]  Rao,et al.  Laminar Ceramics That Exhibit a Threshold Strength. , 1999, Science.

[9]  C. Navarro,et al.  Statistical analysis of the mechanical properties of composite materials , 2000 .

[10]  Theo Fett,et al.  Stress intensity factors and weight functions , 1997 .

[11]  N. Salamon,et al.  Bifurcation in isotropic thinfilm/substrate plates , 1995 .

[12]  A. Evans,et al.  Fracture Mechanics of Ceramics , 1986 .

[13]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[14]  H Fessler,et al.  The Unit Strength Concept in the Interpretation of Beam Test Results for Brittle Materials , 1976 .

[15]  H. Peterlik,et al.  The validity of Weibull estimators , 1995, Journal of Materials Science.

[16]  Bj de Smet,et al.  Weakest-link failure prediction for ceramics II: Design and analysis of uniaxial and biaxial bend tests , 1992 .

[17]  G. Thompson Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. , 2000, Dental materials : official publication of the Academy of Dental Materials.

[18]  E. Busso,et al.  Thermally induced failure of multilayer ceramic structures , 2001 .

[19]  Bj de Smet,et al.  Weakest-link failure predictions for ceramics III: Uniaxial and biaxial bend tests on alumina , 1992 .

[20]  Patrick Tounsi,et al.  Characterization method of thermomechanical parameters for microelectronic materials , 2002, Microelectron. Reliab..

[21]  C. Klein,et al.  Strains and stresses in multilayered elastic structures: The case of chemically vapor-deposited ZnS/ZnSe laminates , 2000 .

[22]  M. Larsson,et al.  Tensile testing as a method for determining the Young's modulus of thin hard coatings , 1997 .

[23]  J. D. Sullivan,et al.  Experimental probability estimators for Weibull plots , 1986 .

[24]  R. Plunkett,et al.  Formulas for Stress and Strain , 1965 .