暂无分享,去创建一个
[1] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[2] G H Ball,et al. A clustering technique for summarizing multivariate data. , 1967, Behavioral science.
[3] N. Otsu. A threshold selection method from gray level histograms , 1979 .
[4] Stephen J. Redmond,et al. A method for initialising the K-means clustering algorithm using kd-trees , 2007, Pattern Recognit. Lett..
[5] P.K Sahoo,et al. A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..
[6] Michael R. Anderberg,et al. Cluster Analysis for Applications , 1973 .
[7] Victoria Mantzopoulos,et al. A Comparative Performance Study , 2011 .
[8] Bülent Sankur,et al. Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.
[9] Carlos Ordonez,et al. Efficient disk-based K-means clustering for relational databases , 2004, IEEE Transactions on Knowledge and Data Engineering.
[10] Julius T. Tou,et al. Pattern Recognition Principles , 1974 .
[11] Anil K. Jain. Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..
[12] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[13] Seiji Yamada,et al. Careful Seeding Method based on Independent Components Analysis for k-means Clustering , 2012 .
[14] Sungzoon Cho,et al. K-Means Clustering Seeds Initialization Based on Centrality, Sparsity, and Isotropy , 2009, IDEAL.
[15] Francisco José Madrid-Cuevas,et al. Evaluation of global thresholding techniques in non-contextual edge detection , 2005, Pattern Recognit. Lett..
[16] Patricio A. Vela,et al. A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm , 2012, Expert Syst. Appl..
[17] Meena Mahajan,et al. The Planar k-means Problem is NP-hard I , 2009 .
[18] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[19] Paul S. Bradley,et al. Refining Initial Points for K-Means Clustering , 1998, ICML.
[20] Huan Liu,et al. Merging Distance and Density Based Clustering , 2001 .
[21] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[22] Gerald Schaefer,et al. Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods , 2013, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.
[23] Ricardo J. G. B. Campello,et al. Relative clustering validity criteria: A comparative overview , 2010, Stat. Anal. Data Min..
[24] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[25] R. Jancey. Multidimensional group analysis , 1966 .
[26] Nikos A. Vlassis,et al. The global k-means clustering algorithm , 2003, Pattern Recognit..
[27] Anil K. Jain,et al. A self-organizing network for hyperellipsoidal clustering (HEC) , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).
[28] Greg Hamerly,et al. Making k-means Even Faster , 2010, SDM.
[29] M. Emre Celebi,et al. Improving the performance of k-means for color quantization , 2011, Image Vis. Comput..
[30] G. N. Lance,et al. A general theory of classificatory sorting strategies: II. Clustering systems , 1967, Comput. J..
[31] M M Astrahan. SPEECH ANALYSIS BY CLUSTERING, OR THE HYPERPHONEME METHOD , 1970 .
[32] Enrique H. Ruspini,et al. Numerical methods for fuzzy clustering , 1970, Inf. Sci..
[33] Yoshua Bengio,et al. Convergence Properties of the K-Means Algorithms , 1994, NIPS.
[34] Huan Liu,et al. '1+1>2': merging distance and density based clustering , 2001, Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001.
[35] Man Lan,et al. Initialization of cluster refinement algorithms: a review and comparative study , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).
[36] Jiang-She Zhang,et al. Robust clustering by pruning outliers , 2003, IEEE Trans. Syst. Man Cybern. Part B.
[37] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[38] Øivind Due Trier,et al. Evaluation of Binarization Methods for Document Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[39] Pedro Larrañaga,et al. An empirical comparison of four initialization methods for the K-Means algorithm , 1999, Pattern Recognit. Lett..
[40] E. Forgy,et al. Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .
[41] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[42] Harold Hotelling,et al. Simplified calculation of principal components , 1936 .
[43] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[44] Edward Y. Chang,et al. Parallel Spectral Clustering in Distributed Systems , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[45] Jiye Liang,et al. An initialization method for the K-Means algorithm using neighborhood model , 2009, Comput. Math. Appl..
[46] Shao-Yi Chien,et al. Bandwidth adaptive hardware architecture of K-Means clustering for intelligent video processing , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.
[47] H. Späth,et al. Computational experiences with the exchange method , 1977 .
[48] Shao-Yi Chien,et al. Bandwidth Adaptive Hardware Architecture of K-Means Clustering for Video Analysis , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
[49] G. W. Milligan,et al. A study of standardization of variables in cluster analysis , 1988 .
[50] Mohammad Al Hasan,et al. Robust partitional clustering by outlier and density insensitive seeding , 2009, Pattern Recognit. Lett..
[51] D.M. Mount,et al. An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[52] Mothd Belal Al-Daoud. A New Algorithm for Cluster Initialization , 2005, WEC.
[53] Ting Su,et al. In search of deterministic methods for initializing K-means and Gaussian mixture clustering , 2007, Intell. Data Anal..
[54] Sang Uk Lee,et al. A comparative performance study of several global thresholding techniques for segmentation , 1990, Comput. Vis. Graph. Image Process..
[55] Agostino Tarsitano,et al. A computational study of several relocation methods for k-means algorithms , 2003, Pattern Recognit..
[56] Pierre Hansen,et al. NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.
[57] Shokri Z. Selim,et al. K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[58] M. Norusis. IBM SPSS Statistics 19 Statistical Procedures Companion , 2011 .