Formulae and Growth Rates of High-Dimensional Polycubes

Abstract A d-dimensional polycube is a facet-connected set of cubes in d dimensions. Fixed polycubes are considered distinct if they differ in shape or orientation. A proper d-D polycube spans all d dimensions. In this paper we prove some formulae for fixed (proper and improper) polycubes, show that the growth-rate limit of the number of polycubes in d dimensions is 2 ed − o ( d ) , and estimate it at ( 2 d − 3 ) e + O ( 1 / d ) .

[1]  Iwan Jensen,et al.  Counting Polyominoes: A Parallel Implementation for Cluster Computing , 2003, International Conference on Computational Science.

[2]  Ronald C. Read,et al.  Graph theory and computing , 1972 .

[3]  D. Klarner Cell Growth Problems , 1967, Canadian Journal of Mathematics.

[4]  D. Hugh Redelmeier,et al.  Counting polyominoes: Yet another attack , 1981, Discret. Math..

[5]  Gill Barequet,et al.  Counting polycubes without the dimensionality curse , 2008, Discret. Math..

[6]  Neal Madras,et al.  A pattern theorem for lattice clusters , 1999 .

[7]  G. Rote,et al.  Counting Polyominoes on Twisted Cylinders , 2004 .

[8]  J. Moon Counting labelled trees , 1970 .

[9]  Moshe Schwartz,et al.  Two-dimensional cluster-correcting codes , 2005, IEEE Transactions on Information Theory.

[10]  Gordon Slade,et al.  The Self-Avoiding-Walk and Percolation Critical Points in High Dimensions , 1995, Combinatorics, Probability and Computing.

[11]  S G Whittington,et al.  Relationships between growth constants for animals and trees (lattice theory) , 1994 .

[12]  W. F. Lunnon SYMMETRY OF CUBICAL AND GENERAL POLYOMINOES , 1972 .

[13]  W. F. Lunnon,et al.  Counting Multidimensional Polyominoes , 1975, Comput. J..

[14]  Heather J. Ruskin,et al.  Percolation processes in d-dimensions , 1976 .

[15]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Gill Barequet,et al.  Counting d-Dimensional Polycubes and nonrectangular Planar polyominoes , 2009, Int. J. Comput. Geom. Appl..

[17]  D. Gaunt,et al.  1/d-expansions for the free energy of weakly embedded site animal models of branched polymers , 2000 .

[18]  M. Eden A Two-dimensional Growth Process , 1961 .

[19]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[20]  D. Gaunt,et al.  The critical dimension for lattice animals , 1980 .

[21]  The free energy of a collapsing branched polymer , 1990 .

[22]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[23]  J. L. Martin,et al.  The impact of large-scale computing on lattice statistics , 1990 .

[24]  D. Klarner,et al.  A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[25]  D. Gaunt,et al.  1/d-expansions for the free energy of lattice animal models of a self-interacting branched polymer , 1995 .