Formulae and Growth Rates of High-Dimensional Polycubes
暂无分享,去创建一个
[1] Iwan Jensen,et al. Counting Polyominoes: A Parallel Implementation for Cluster Computing , 2003, International Conference on Computational Science.
[2] Ronald C. Read,et al. Graph theory and computing , 1972 .
[3] D. Klarner. Cell Growth Problems , 1967, Canadian Journal of Mathematics.
[4] D. Hugh Redelmeier,et al. Counting polyominoes: Yet another attack , 1981, Discret. Math..
[5] Gill Barequet,et al. Counting polycubes without the dimensionality curse , 2008, Discret. Math..
[6] Neal Madras,et al. A pattern theorem for lattice clusters , 1999 .
[7] G. Rote,et al. Counting Polyominoes on Twisted Cylinders , 2004 .
[8] J. Moon. Counting labelled trees , 1970 .
[9] Moshe Schwartz,et al. Two-dimensional cluster-correcting codes , 2005, IEEE Transactions on Information Theory.
[10] Gordon Slade,et al. The Self-Avoiding-Walk and Percolation Critical Points in High Dimensions , 1995, Combinatorics, Probability and Computing.
[11] S G Whittington,et al. Relationships between growth constants for animals and trees (lattice theory) , 1994 .
[12] W. F. Lunnon. SYMMETRY OF CUBICAL AND GENERAL POLYOMINOES , 1972 .
[13] W. F. Lunnon,et al. Counting Multidimensional Polyominoes , 1975, Comput. J..
[14] Heather J. Ruskin,et al. Percolation processes in d-dimensions , 1976 .
[15] J. Hammersley,et al. Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] Gill Barequet,et al. Counting d-Dimensional Polycubes and nonrectangular Planar polyominoes , 2009, Int. J. Comput. Geom. Appl..
[17] D. Gaunt,et al. 1/d-expansions for the free energy of weakly embedded site animal models of branched polymers , 2000 .
[18] M. Eden. A Two-dimensional Growth Process , 1961 .
[19] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[20] D. Gaunt,et al. The critical dimension for lattice animals , 1980 .
[21] The free energy of a collapsing branched polymer , 1990 .
[22] T. J. Rivlin. Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .
[23] J. L. Martin,et al. The impact of large-scale computing on lattice statistics , 1990 .
[24] D. Klarner,et al. A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[25] D. Gaunt,et al. 1/d-expansions for the free energy of lattice animal models of a self-interacting branched polymer , 1995 .