Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) Using Remote Sensing and Penman-Monteith Equation

Abstract: To achieve sustainable development and to ensure water availability in hydrological basins, water managers need tools to determine the actual evapotranspiration (ET) on a large scale. Field energy balances from irrigated and natural ecosystems together with a net of agro-meteorological stations were used to develop two models for ET quantification at basin scale, based on the Penman-Monteith equation. The first model (PM1) uses the resistances to the latent heat fluxes estimated from satellite measurements, while the second one (PM2) is based on the ratio of ET to the reference evapotranspiration (ET 0 ) and its relation to remote sensing parameters. The models were applied in the Low-Middle Sao Francisco river basin in Brazil and, after comparison against field results, showed good agreements with PM1 and PM2 explaining, respectively, 79% and 89% of the variances and mean square errors (RMSE) of 0.44 and 0.34 mm d −1 . Even though the PM1 model was not chosen for ET calculations, the equation for surface resistance (r

[1]  CROP CLASSIFICATION FOR THE NILO COELHO SCHEME BY USING LANDSAT TM IMAGES , 2003 .

[2]  H. Cleugh,et al.  Modelling sensible heat fluxes from a wheat canopy: an evaluation of the resistance energy balance model , 1995 .

[3]  Wim G.M. Bastiaanssen,et al.  Thermal-infrared technology for local and regional scale irrigation analyses in horticultural systems , 2008 .

[4]  Charlotte Bay Hasager,et al.  Incorporating remote sensing data in physically based distributed agro-hydrological modelling , 2004 .

[5]  Wim G.M. Bastiaanssen,et al.  Determination of surface hemispherical reflectance with Thematic Mapper data , 1989 .

[6]  Gautam Bisht,et al.  Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains , 2006 .

[7]  R. Crago,et al.  Analytical Land–Atmosphere Radiometer Model , 2002 .

[8]  Wim G.M. Bastiaanssen,et al.  Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the São Francisco river basin, Brazil , 2007 .

[9]  T. Schmugge,et al.  Remote sensing in hydrology , 2002 .

[10]  Bruno Monteny,et al.  Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation. I. An experimental analysis of the kB−1 parameter , 1997 .

[11]  W. Meijninger,et al.  The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer. , 2000 .

[12]  T. Meyers,et al.  Correction Of Eddy-Covariance Measurements Incorporating Both Advective Effects And Density Fluxes , 2000, Boundary-Layer Meteorology.

[13]  Wim G.M. Bastiaanssen,et al.  Mapping root zone soil moisture using remotely sensed optical imagery , 2003 .

[14]  T. Black,et al.  Annual and seasonal variability of sensible and latent heat fluxes above a coastal Douglas-fir forest, British Columbia, Canada , 2003 .

[15]  N. Conceição,et al.  Peach orchard evapotranspiration in a sandy soil: Comparison between eddy covariance measurements and estimates by the FAO 56 approach , 2006 .

[16]  Zhanqing Li,et al.  Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter , 2006 .

[17]  Francisco J. Villalobos,et al.  Variations in bulk canopy conductance of an irrigated olive (Olea europaea L.) orchard , 2006 .

[18]  H. L. Penman Natural evaporation from open water, bare soil and grass , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  X. Lee,et al.  Micrometeorological fluxes under the influence of regional and local advection: a revisit , 2004 .

[20]  Albert Olioso,et al.  Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula , 2007 .

[21]  Tim R. McVicar,et al.  Current and potential uses of optical remote sensing in rice-based irrigation systems: a review , 2004 .

[22]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[23]  W. Oechel,et al.  Energy balance closure at FLUXNET sites , 2002 .

[24]  R. Allen,et al.  Satellite-based ET mapping to assess variation in ET with timing of crop development , 2007 .

[25]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[26]  P. Pinter,et al.  Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index , 2003, Irrigation Science.

[27]  Manfred Owe,et al.  Determination of microwave vegetation optical depth and single scattering albedo from large scale soil moisture and Nimbus/SMMR satellite observations , 1993 .

[28]  George C. Zalidis,et al.  Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas , 2009, Remote. Sens..

[29]  G. Boulet,et al.  A methodology to test the pertinence of remote-sensing data assimilation into vegetation models for water and energy exchange at the land surface , 2004 .

[30]  P. Gleick The World's Water 2000-2001: The Biennial Report On Freshwater Resources , 1998 .

[31]  J. Norman,et al.  Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover , 1999 .

[32]  W. Bastiaanssen SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey , 2000 .

[33]  Wim G.M. Bastiaanssen,et al.  Monitoring irrigation performance in Esfahan, Iran, using NOAA satellite imagery , 2007 .

[34]  S. Running,et al.  Regional evaporation estimates from flux tower and MODIS satellite data , 2007 .

[35]  T. Schmugge,et al.  Jornada experimental range : A unique arid land location for experiments to validate satellite systems , 2000 .

[36]  Nathaniel A. Brunsell,et al.  Scale issues in land-atmosphere interactions: implications for remote sensing of the surface energy balance , 2003 .

[37]  Douglas J. Hunsaker,et al.  Wheat basal crop coefficients determined by normalized difference vegetation index , 2005, Irrigation Science.

[38]  H. Soegaard,et al.  Modelling of evaporation in a sparse millet crop using a two-source model including sensible heat advection within the canopy , 2003 .

[39]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[40]  Wim G.M. Bastiaanssen,et al.  Evaluation of the temporal variability of the evaporative fraction in a tropical watershed , 2004 .

[41]  William P. Kustas,et al.  Using a remote sensing field experiment to investigate flux-footprint relations and flux sampling distributions for tower and aircraft-based observations , 2006 .

[42]  Massimo Menenti,et al.  Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements , 2003 .

[43]  Pamela L. Nagler,et al.  Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers , 2005 .

[44]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[45]  Jetse D. Kalma,et al.  Estimating evaporation from pasture using infrared thermometry: evaluation of a one-layer resistance model. , 1990 .

[46]  T. J. Majumdar,et al.  On the utilization of ENVISAT AATSR data for geological/hydrological applications , 2007 .

[47]  Wim G.M. Bastiaanssen,et al.  Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low - Middle Sao Francisco River basin, Brazil : part A : calibration and validation , 2009 .

[48]  Y. Cohen,et al.  Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. , 2006, Journal of experimental botany.

[49]  B. Choudhury,et al.  Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range , 2007 .

[50]  Jing M. Chen,et al.  Mapping evapotranspiration based on remote sensing: An application to Canada's landmass , 2003 .

[51]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[52]  E. Swiatek,et al.  Density Fluctuations and Use of the Krypton Hygrometer in Surface Flux Measurements , 1993 .

[53]  David R. Miller,et al.  An evaluation of two inexpensive energy-balance techniques for measuring water use in flood-irrigated pecans (Carya illinoinensis) , 2007 .

[54]  J. Norman,et al.  Remote sensing of surface energy fluxes at 101‐m pixel resolutions , 2003 .

[55]  Jun Asanuma,et al.  Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia , 2006 .

[56]  A. Naor,et al.  Irrigation Scheduling and Evaluation of Tree Water Status in Deciduous Orchards , 2010 .

[57]  C. J. Moore Frequency response corrections for eddy correlation systems , 1986 .

[58]  Reiji Kimura,et al.  Evapo-transpiration estimation over the river basin of the Loess Plateau of China based on remote sensing , 2007 .

[59]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[60]  J. Cleverly,et al.  Seasonal estimates of actual evapo-transpiration from Tamarix ramosissima stands using three-dimensional eddy covariance , 2002 .

[61]  E. K. Webb,et al.  Correction of flux measurements for density effects due to heat and water vapour transfer , 1980 .

[62]  J. Stewart On the use of the Penman-Monteith equation for determining areal evapotranspiration , 1989 .

[63]  Matthew F. McCabe,et al.  Modeling Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and Regional-Scale Prediction , 2005 .

[64]  R. Leuning,et al.  Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates , 2005 .

[65]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[66]  William P. Kustas,et al.  Aerodynamic parameters and sensible heat flux estimates for a semi-arid ecosystem , 2004 .

[67]  J. Hoedjes,et al.  Determination of Area-Averaged Sensible Heat Fluxes with a Large Aperture Scintillometer over a Heterogeneous Surface – Flevoland Field Experiment , 2002 .

[68]  Guido D'Urso,et al.  Remote sensing, GIS and hydrological modelling for irrigation management , 1996 .

[69]  Anthony Morse,et al.  A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning , 2005 .

[70]  J. Norman,et al.  Surface flux estimation using radiometric temperature: A dual‐temperature‐difference method to minimize measurement errors , 2000 .

[71]  C. Acevedo,et al.  Latent heat flux over Cabernet Sauvignon vineyard using the Shuttleworth and Wallace model , 2006, Irrigation Science.

[72]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[73]  Reiji Kimura,et al.  Estimation of moisture availability over the Liudaogou river basin of the Loess Plateau using new indices with surface temperature , 2007 .

[74]  A. Chehbouni,et al.  Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices , 2006 .

[75]  Emilio A. Laca,et al.  Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem , 2003 .

[76]  Lalith Chandrapala,et al.  Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer , 2003 .

[77]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[78]  Benoît Duchemin,et al.  Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region , 2007 .

[79]  Peter H. Gleick,et al.  The World’s Water , 2011 .

[80]  R. Stewart The atmosphere boundary layer , 1979 .

[81]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[82]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[83]  F. Villalobos,et al.  Evapotranspiration and crop coefficients of irrigated garlic (Allium sativum L.) in a semi-arid climate , 2004 .

[84]  Wim G.M. Bastiaanssen,et al.  Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil: Part B: Application to the regional scale , 2009 .

[85]  Luca Testi,et al.  Evapotranspiration of a young irrigated olive orchard in southern Spain , 2003 .

[86]  Wim G.M. Bastiaanssen,et al.  Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil , 2008 .

[87]  N. Inman-Bamber,et al.  Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements , 2003 .

[88]  Pamela L. Nagler,et al.  Evapotranspiration in a cottonwood (Populus fremontii) restoration plantation estimated by sap flow and remote sensing methods , 2007 .

[89]  M. G. Bos,et al.  Energy and water balance measurements for water productivity analysis in irrigated mango trees, Northeast Brazil , 2008 .