Construction of nonnegative symmetric matrices with given spectrum

Abstract Let σ  = ( λ 1 , … ,  λ n ) be the spectrum of a nonnegative symmetric matrix A with the Perron eigenvalue λ 1 , a diagonal entry c and let τ  = ( μ 1 , … ,  μ m ) be the spectrum of a nonnegative symmetric matrix B with the Perron eigenvalue μ 1 . We show how to construct a nonnegative symmetric matrix C with the spectrum ( λ 1 + max { 0 , μ 1 - c } , λ 2 , … , λ n , μ 2 , … , μ m ) .

[1]  W. Ames Mathematics in Science and Engineering , 1999 .

[2]  Helena Šmigoc,et al.  The inverse eigenvalue problem for nonnegative matrices , 2004 .

[3]  Construction of nonnegative matrices and the inverse eigenvalue problem , 2005 .

[4]  J. McDonald,et al.  A note on the convexity of the realizable set of eigenvalues for nonnegative symmetric matrices , 2001 .

[5]  A characterization of trace zero nonnegative 5×5 matrices , 1999 .

[6]  M. Fiedler Eigenvalues of Nonnegative Symmetric Matrices , 1974 .

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  R. Loewy,et al.  The symmetric nonnegative inverse eigenvalue problem for 5 × 5 matrices , 2004 .

[9]  Alberto Borobia,et al.  Negativity compensation in the nonnegative inverse eigenvalue problem , 2004 .

[10]  Guo Wuwen,et al.  Elgenvalues of nonnegative matrices , 1997 .

[11]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[12]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[13]  Sivaram K. Narayan,et al.  The nonnegative inverse eigenvalue problem , 2004 .

[14]  T. Laffey Extreme nonnegative matrices , 1998 .

[15]  Alberto Borobia,et al.  On the comparison of some realizability criteria for the real nonnegative inverse eigenvalue problem , 2005 .

[16]  Raphael Loewy,et al.  A note on an inverse problem for nonnegative matrices , 1978 .

[17]  Mike Boyle,et al.  The spectra of nonnegative matrices via symbolic dynamics , 1991 .

[18]  R. Bruce Kellogg,et al.  Matrices similar to a positive or essentially positive matrix , 1971 .