Three-dimensional printed millimetre wave dielectric resonator reflectarray

Reflectarray antennas have attracted extensive attention due to their low loss, high gain, compact volume, and their excellent abilities to control the radiated beam. The use of dielectric resonators as the reflectarray elements minimises the ohmic loss and the coupling between elements. This study uses fused deposition modelling (FDM) three-dimensional (3D) printing rapidly prototyping a low cost and light-weight dielectric resonator reflectarray. The demonstrated reflectarray is composed of 625 3D printed dielectric resonator elements to control the reflected phase over the reflector surface. The total size is 12 × 12 cm2 and the mass is 67 g. Measurements show that this reflectarray provides 28 dBi gain at 30 GHz when offset fed by a Ka-band horn antenna. This work demonstrates the potential of FDM for millimetre wave (mm-wave) applications. The new 3D printing approach can be deployed for high-gain mm-wave antenna fabrication with significantly reduced labour time and material costs.

[1]  C. Chan,et al.  Wideband dielectric resonator terahertz reflectarray , 2015, 2015 IEEE International Conference on Computational Electromagnetics.

[2]  Shiyu Zhang Design and fabrication of 3D-printed planar Fresnel zone plate lens , 2016 .

[3]  Wei Hong,et al.  A Ka-Band Reflectarray Implemented With a Single-Layer Perforated Dielectric Substrate , 2012, IEEE Antennas and Wireless Propagation Letters.

[4]  D. R. Andersen,et al.  Third-Order Optical Response of Metallic Armchair Graphene Nanoribbons to an Elliptically-Polarized Terahertz Excitation Field , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Atef Z. Elsherbeni,et al.  3D Printed Dielectric Reflectarrays: Low-Cost High-Gain Antennas at Sub-Millimeter Waves , 2014, IEEE Transactions on Antennas and Propagation.

[6]  John Huang,et al.  Bandwidth study of microstrip reflectarray and a novel phased reflectarray concept , 1995, IEEE Antennas and Propagation Society International Symposium. 1995 Digest.

[7]  Jean-Dominique Decotignie,et al.  3D printed antennas for Mm-wave sensing applications , 2017, 2017 11th International Symposium on Medical Information and Communication Technology (ISMICT).

[8]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[9]  Raj Mittra,et al.  3D-printed planar graded index lenses , 2016 .

[10]  A. Ittipiboon,et al.  A Ka-Band Dielectric Resonator Antenna Reflectarray , 2000, 2000 30th European Microwave Conference.

[11]  Derek Abbott,et al.  Terahertz Reflectarrays and Nonuniform Metasurfaces , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[13]  Amit A. Deshmukh,et al.  Reflectarray Antennas , 2014 .

[14]  Aldo Petosa,et al.  Dielectric Resonator Antennas: A Historical Review and the Current State of the Art , 2010, IEEE Antennas and Propagation Magazine.

[15]  José A. Encinar,et al.  Broadband design of three-layer printed reflectarrays , 2003 .

[16]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[17]  Hang Wong,et al.  A Wideband Millimeter-Wave Circularly Polarized Antenna With 3-D Printed Polarizer , 2017, IEEE Transactions on Antennas and Propagation.

[18]  Patrick S. Grant,et al.  3D printed anisotropic dielectric composite with meta-material features , 2016 .

[19]  Kwok Wa Leung,et al.  Dielectric Resonator Antennas: From the Basic to the Aesthetic , 2012, Proceedings of the IEEE.