Structure–Activity Studies in a Family of β‐Hairpin Protein Epitope Mimetic Inhibitors of the p53–HDM2 Protein–Protein Interaction

Inhibitors of the interaction between the p53 tumor‐suppressor protein and its natural human inhibitor HDM2 are attractive as potential anticancer agents. In earlier work we explored designing β‐hairpin peptidomimetics of the α‐helical epitope on p53 that would bind tightly to the p53‐binding site on HDM2. The β‐hairpin is used as a scaffold to display energetically hot residues in an optimal array for interaction with HDM2. The initial lead β‐hairpin mimetic, with a weak inhibitory activity (IC50=125 μM), was optimized to afford cyclo‐(L‐Pro‐Phe‐Glu‐6ClTrp‐Leu‐Asp‐Trp‐Glu‐Phe‐D‐Pro) (where 6ClTrp=L‐6‐chlorotryptophan), which has an affinity almost 1000 times higher (IC50=140 nM). In this work, insights into the origins of this affinity maturation based on structure–activity studies and an X‐ray crystal structure of the inhibitor/HDM2(residues 17–125) complex at 1.4 Å resolution are described. The crystal structure confirms the β‐hairpin conformation of the bound ligand, and also reveals that a significant component of the affinity increase arises through new aromatic/aromatic stacking interactions between side chains around the hairpin and groups on the surface of HDM2.

[1]  Wechselwirkungen mit aromatischen Ringen in chemischen und biologischen Erkennungsprozessen , 2003 .

[2]  Maxwell D Cummings,et al.  1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction: discovery and SAR. , 2005, Bioorganic & medicinal chemistry letters.

[3]  A. Fersht,et al.  Binding of p53-derived ligands to MDM2 induces a variety of long range conformational changes. , 2004, Journal of molecular biology.

[4]  Jiandong Chen,et al.  p53 α-Helix mimetics antagonize p53/MDM2 interaction and activate p53 , 2005, Molecular Cancer Therapeutics.

[5]  V. Huber,et al.  (1-Benzimidazolonyl)alanine (Bia): preliminary investigations into a potential tryptophan mimetic , 2002 .

[6]  T. Clackson,et al.  A hot spot of binding energy in a hormone-receptor interface , 1995, Science.

[7]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[8]  On the use of strong Patterson function signals in many-body molecular replacement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[9]  Grégori Gerebtzoff,et al.  Halogenation of Drugs Enhances Membrane Binding and Permeation , 2004, Chembiochem : a European journal of chemical biology.

[10]  P. Furet,et al.  Coupling of the antennapedia third helix to a potent antagonist of the p53/hdm2 protein-protein interaction. , 2001, Bioorganic & medicinal chemistry letters.

[11]  John A. Robinson,et al.  Structural mimicry of retroviral tat proteins by constrained beta-hairpin peptidomimetics: ligands with high affinity and selectivity for viral TAR RNA regulatory elements. , 2004, Journal of the American Chemical Society.

[12]  C. Toniolo,et al.  Peptoid residues and β‐turn formation , 2002, Journal of peptide science : an official publication of the European Peptide Society.

[13]  P. Hajduk,et al.  NMR-based screening in drug discovery , 1999, Quarterly Reviews of Biophysics.

[14]  J M Thornton,et al.  Pi-pi interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. , 1991, Journal of molecular biology.

[15]  Per Källblad,et al.  Isoindolinone-based inhibitors of the MDM2-p53 protein-protein interaction. , 2005, Bioorganic & medicinal chemistry letters.

[16]  Garland R. Marshall,et al.  Conformational Analysis of Reverse-Turn Constraints by N-Methylation and N-Hydroxylation of Amide Bonds in Peptides and Non-Peptide Mimetics , 1998 .

[17]  G. Klebe,et al.  pH‐Dependent Binding Modes Observed in Trypsin Crystals: Lessons for Structure‐Based Drug Design , 2002 .

[18]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[19]  Bin Ye,et al.  Crystal structures of two potent nonamidine inhibitors bound to factor Xa. , 2002, Biochemistry.

[20]  John A. Robinson,et al.  Stabilization of aβ-Hairpin Conformation in a Cyclic Peptide Using the Templating Effect of a Heterochiral Diproline Unit , 1998 .

[21]  Matthew A Cooper,et al.  Binding of an inhibitor of the p53/MDM2 interaction to MDM2. , 2003, Chemical communications.

[22]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[23]  John A. Robinson,et al.  Properties and structure-activity studies of cyclic beta-hairpin peptidomimetics based on the cationic antimicrobial peptide protegrin I. , 2005, Bioorganic & medicinal chemistry.

[24]  T. Kodadek,et al.  Transformation of low-affinity lead compounds into high-affinity protein capture agents. , 2004, Chemistry & biology.

[25]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[26]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[27]  M. McCoy,et al.  Flexible lid to the p53-binding domain of human Mdm2: Implications for p53 regulation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Thomas Peters,et al.  NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. , 2003, Angewandte Chemie.

[29]  A. Fersht,et al.  Molecular mechanism of the interaction between MDM2 and p53. , 2002, Journal of molecular biology.

[30]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.

[31]  G A Petsko,et al.  Amino‐aromatic interactions in proteins , 1986, FEBS letters.

[32]  Sébastien Maignan,et al.  Molecular structures of human factor Xa complexed with ketopiperazine inhibitors: preference for a neutral group in the S1 pocket. , 2003, Journal of medicinal chemistry.

[33]  D. Williams,et al.  Isolation and structure elucidation of Chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. , 2001, Journal of the American Chemical Society.

[34]  S. Homans NMR spectroscopy tools for structure-aided drug design. , 2004, Angewandte Chemie.

[35]  Steve W. Homans NMR‐Methoden zum strukturgestützten Wirkstoff‐Design , 2004 .

[36]  Siddhartha Roy,et al.  Aib-based peptide backbone as scaffolds for helical peptide mimics. , 2002, The journal of peptide research : official journal of the American Peptide Society.

[37]  Joshua A. Kritzer,et al.  Solution Structure of a β-Peptide Ligand for hDM2 , 2005 .

[38]  David P. Lane,et al.  Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo , 1997, Current Biology.

[39]  Oliver Zerbe,et al.  Using a β‐Hairpin To Mimic an α‐Helix: Cyclic Peptidomimetic Inhibitors of the p53–HDM2 Protein–Protein Interaction , 2004 .

[40]  M. Searle Peptide models of protein β-sheets: design, folding and insights into stabilising weak interactions , 2001 .

[41]  S. Gellman,et al.  A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction. , 2002, Analytical biochemistry.

[42]  S. Gellman Minimal model systems for β-sheet secondary structure in proteins , 1998 .

[43]  C. Renner,et al.  Letter to the Editor: Sequence-specific 1H, 15N, and 13C assignment of the N-terminal domain of the human oncoprotein MDM2 that binds to p53 , 2000, Journal of biomolecular NMR.

[44]  S. Sebti,et al.  Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. , 2005, Angewandte Chemie.

[45]  C. Renner,et al.  Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. , 2001, Biochemistry.

[46]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[47]  B. Meyer,et al.  NMR‐Techniken zum Screening und zur Identifizierung der Bindung von Liganden an Proteinrezeptoren , 2003 .

[48]  T. Clackson,et al.  Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity. , 1998, Journal of molecular biology.

[49]  Paul N Barlow,et al.  Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. , 2005, Journal of molecular biology.

[50]  R. Copeland,et al.  Thermodynamics of p53 binding to hdm2(1-126): effects of phosphorylation and p53 peptide length. , 2000, Archives of biochemistry and biophysics.

[51]  John A. Robinson,et al.  Structural Mimicry of Canonical Conformations in Antibody Hypervariable Loops Using Cyclic Peptides Containing a Heterochiral Diproline Template , 1999 .

[52]  M. Lawrence,et al.  Shape complementarity at protein/protein interfaces. , 1993, Journal of molecular biology.

[53]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[54]  B. L. Sibanda,et al.  [5] Conformation of β hairpins in protein structures: Classification and diversity in homologous structures , 1991 .

[55]  J A Wells,et al.  Binding in the growth hormone receptor complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Urch,et al.  Experimental Measurement of Noncovalent Interactions Between Halogens and Aromatic Rings , 2004, Chembiochem : a European journal of chemical biology.

[57]  M. Pincus,et al.  Peptides from the amino terminal mdm-2-binding domain of p53, designed from conformational analysis, are selectively cytotoxic to transformed cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[59]  P. Chène Inhibiting the p53–MDM2 interaction: an important target for cancer therapy , 2003, Nature Reviews Cancer.

[60]  M. Searle,et al.  Design of beta-sheet systems for understanding the thermodynamics and kinetics of protein folding. , 2004, Current opinion in structural biology.

[61]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[62]  D. Lane,et al.  Identification of novel mdm2 binding peptides by phage display. , 1996, Oncogene.

[63]  Joshua A. Kritzer,et al.  Helical β-Peptide Inhibitors of the p53-hDM2 Interaction , 2004 .

[64]  John A. Robinson,et al.  Combinatorial Biomimetic Chemistry: Parallel Synthesis of a Small Library ofβ-Hairpin Mimetics Based on Loop III from Human Platelet-Derived Growth Factor B , 2000 .

[65]  Wolfgang Kabsch,et al.  Evaluation of Single-Crystal X-ray Diffraction Data from a Position-Sensitive Detector , 1988 .

[66]  K. Wilson,et al.  Efficient anisotropic refinement of macromolecular structures using FFT. , 1999, Acta crystallographica. Section D, Biological crystallography.

[67]  John A. Robinson,et al.  A family of macrocyclic antibiotics with a mixed peptide-peptoid beta-hairpin backbone conformation. , 2003, Chemical communications.

[68]  Maxwell D Cummings,et al.  Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. , 2005, Journal of medicinal chemistry.

[69]  Kengo Watanabe,et al.  Synthesis and conformational analysis of a non-amidine factor Xa inhibitor that incorporates 5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridine as S4 binding element. , 2004, Journal of medicinal chemistry.

[70]  S. Brady,et al.  Design and synthesis of a series of potent and orally bioavailable noncovalent thrombin inhibitors that utilize nonbasic groups in the P1 position. , 1998, Journal of medicinal chemistry.

[71]  O. Dym,et al.  The modular architecture of protein-protein binding interfaces. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  D. Fabbro,et al.  A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. , 2000, Journal of molecular biology.

[73]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[74]  A. Bogan,et al.  Anatomy of hot spots in protein interfaces. , 1998, Journal of molecular biology.

[75]  John A. Robinson,et al.  Macrocyclic Hairpin Mimetics of the Cationic Antimicrobial Peptide Protegrin I: A New Family of Broad‐Spectrum Antibiotics , 2002, Chembiochem : a European journal of chemical biology.

[76]  K Wüthrich,et al.  The program XEASY for computer-supported NMR spectral analysis of biological macromolecules , 1995, Journal of biomolecular NMR.

[77]  John A. Robinson,et al.  A New Family of β‐Hairpin Mimetics Based on a Trypsin Inhibitor from Sunflower Seeds , 2002, Chembiochem : a European journal of chemical biology.

[78]  P. Furet,et al.  Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. , 2000, Journal of medicinal chemistry.

[79]  P. Toogood Inhibition of protein-protein association by small molecules: approaches and progress. , 2002, Journal of medicinal chemistry.

[80]  Donald J Abraham,et al.  A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. , 2004, Journal of medicinal chemistry.