Asymmetry and duality in topology

Abstract Many mathematical structures come in symmetric and asymmetric versions. Classical examples include commutative and noncommutative algebraic structures, as well as symmetric preorders (=equivalence relations) and asymmetric such (usually partial orders). In these cases, there is always a duality available, whose use simplifies their study, and which reduces to the identity in the symmetric case. Also, in each of these cases, while symmetry is a simplifying assumption, there are many useful asymmetric examples. A similar phenomenon occurs in general topology, although in this case there are often many available useful duals. There are also many useful asymmetric spaces, such as the finite T0 spaces and the unit interval with the upper, or lower topology (in fact the Scott and lower topologies on any continuous lattice). The latter, using a dual, gives rise to the usual topology and order on the unit interval.

[1]  Bernhard Banaschewski,et al.  Stone-Čech compactification of locales II , 1984 .

[2]  I. Reilly Zero dimensional bitopological spaces , 1973 .

[3]  R. Archbold,et al.  Quasi-standard C*-algebras , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Ralph Kopperman,et al.  All topologies come from generalized metrics , 1988 .

[5]  Hilary A. Priestley,et al.  Intrinsic Spectral Topologies , 1994 .

[6]  Ralph Kopperman,et al.  Lengths on semigroups and groups , 1982 .

[7]  A. Davis,et al.  Indexed Systems of Neighborhoods for General Topological Spaces , 1961 .

[8]  M. Husek Čech-Stone-like compactifications for general topological spaces , 1992 .

[9]  Melvin Hochster,et al.  Prime ideal structure in commutative rings , 1969 .

[10]  J. D. Lawson,et al.  Order and strongly sober compactifications , 1991 .

[11]  S. Naimpally,et al.  Quasi-uniform topological spaces , 1966 .

[12]  E. P. Lane Bitopological Spaces and Quasi‐Uniform Spaces , 1967 .

[13]  F. Tall The density topology. , 1976 .

[14]  W. J. Thron,et al.  Order-induced topological properties. , 1978 .

[15]  R. Larson Minimal T0-spaces and minimal TD-spaces , 1969 .

[16]  A. Bruckner,et al.  Differentiation of real functions , 1978 .

[17]  B. Mitchell,et al.  Theory of categories , 1965 .

[18]  J. de Groot An isomorphism principle in general topology , 1967 .

[19]  L. Nachbin Topology and order , 1965 .

[20]  H. Herrlich,et al.  The reals and the reals , 1978 .

[21]  M. B. Smyth,et al.  Stable compactification I , 1992 .

[22]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[23]  Ralph Kopperman,et al.  A general theory of structure spaces with applications to spaces of prime ideals , 1991 .

[24]  A. W. Roscoe,et al.  Topology and category theory in computer science , 1991 .

[25]  J. M. G. Fell,et al.  A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space , 1962 .

[26]  Fletcher Quasi-Uniform Spaces , 1982 .

[27]  S. Vickers Topology via Logic , 1989 .

[28]  TOPOLOGICAL SPACES WITH A COARSEST COMPATIBLE QUASI-PROXIMITY , 1986 .

[29]  C. H. Dowker Mappings of proximity structures , 1962 .