Quantum Dots-in-a-Well Focal Plane Arrays

In this paper, the basics and some of the recent developments in quantum dots-in-a-well (DWELL) focal plane arrays (FPAs) are reviewed. Fundamentally, these detectors represent a hybrid between a conventional quantum well infrared photodetector (QWIP) and a quantum dot infrared photodetector (QDIP), in which the active region consists of quantum dots (QDs) embedded in a quantum well (QW). This hybridization grants DWELLs many of the advantages of its components. These advantages include normally incident photon sensitivity without gratings or optocoupers, like QDIPs, and reproducible control over operating wavelength through ldquodial-in recipesrdquo as seen in QWIPs. Recently reported high-temperature operation results for DWELL FPAs now back up the conclusions drawn by the long carrier lifetimes observed in DWELL heterostructures using femtosecond spectroscopy. This paper will conclude with a preview of some upcoming advances in the field of DWELL FPAs.

[1]  A. Shen,et al.  Progress on optimization of p-type GaAs/AlGaAs quantum well infrared photodetectors , 2000 .

[2]  Shih-Yen Lin,et al.  Quantum Dot Infrared Photodetectors , 2018, VLSI Micro- and Nanophotonics.

[3]  S. Franssila,et al.  Thin Solid Films , 2009 .

[4]  R. S. Attaluri,et al.  Low-strain InAs∕InGaAs∕GaAs quantum dots-in-a-well infrared photodetector , 2008 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Jamie D. Phillips,et al.  Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .

[7]  Yagya D. Sharma,et al.  Plasmon assisted photonic crystal quantum dot sensors , 2007, SPIE Optical Engineering + Applications.

[8]  Andreas Stintz,et al.  Theoretical modeling and experimental characterization of InAs∕InGaAs quantum dots in a well detector , 2004 .

[9]  A. Nasr,et al.  Theoretical analysis of quantum dot infrared photodetectors , 2003 .

[10]  Andreas Stintz,et al.  Single bump, two-color quantum dot camera , 2007 .

[11]  Jamie D. Phillips,et al.  Evaluation of the fundamental properties of quantum dot infrared detectors , 2002 .

[12]  Sheng S. Li,et al.  In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K , 2003 .

[13]  E. Dereniak,et al.  Infrared Detectors and Systems , 1996 .

[14]  Gerhard Abstreiter,et al.  Normal-incident intersubband photocurrent spectroscopy on InAs/GaAs quantum dots , 1999 .

[15]  M. Buchanan,et al.  High absorption (>90%) quantum-well infrared photodetectors , 2001 .

[16]  E. Finkman,et al.  Midinfrared photoconductivity of Ge/Si self-assembled quantum dots , 2000 .

[17]  D. Ting,et al.  Band structure and impurity effects on optical properties of quantum well and quantum dot infrared photodetectors , 2007 .

[18]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[19]  S. Krishna,et al.  640$\,\times\,$512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array , 2007, IEEE Journal of Quantum Electronics.

[20]  Luke R. Wilson,et al.  Intraband relaxation via polaron decay in InAs self-assembled quantum dots , 2004 .

[21]  Andreas Stintz,et al.  Resonant cavity enhanced InAs∕In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector , 2007 .

[22]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[23]  Wei Zhang,et al.  High operating temperature 320×256 middle-wavelength infrared focal plane array imaging based on an InAs∕InGaAs∕InAlAs∕InP quantum dot infrared photodetector , 2007 .

[24]  Andrew G. Glen,et al.  APPL , 2001 .

[25]  T. Fukui,et al.  Fabrication of GaAs/AlGaAs Quantum Dots by Metalorganic Vapor Phase Epitaxy on Patterned GaAs Substrates. , 1995 .

[26]  Sanjay Krishna,et al.  Low-bias, high-temperature performance of a normal-incidence InAs/GaAs vertical quantum-dot infrared photodetector with a current-blocking barrier , 2002 .

[27]  Joe C. Campbell,et al.  Quantum-Dot Infrared Photodetectors , 2007, Proceedings of the IEEE.

[28]  Victor Ryzhii,et al.  Characteristics of quantum well infrared photodetectors , 1997 .

[29]  M. B. El Mashade,et al.  Theoretical comparison between quantum well and dot infrared photodetectors , 2006 .

[30]  Pallab Bhattacharya,et al.  Research propels quantum dots forward , 2005 .

[31]  Sergey A. Dvoretsky,et al.  Peculiarities of the MBE growth physics and technology of narrow-gap II-VI compounds , 1997 .

[32]  Jasprit Singh,et al.  Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots , 2002 .

[33]  Sanjay Krishna,et al.  Demonstration of a 320×256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors , 2005 .

[34]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[35]  Wei Zhang,et al.  High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature , 2007 .

[36]  Dark Current in Quantum Dot Infrared Photodetectors , 2000 .

[37]  Andreas Stintz,et al.  Three-color (λp1∼3.8 μm, λp2∼8.5 μm, and λp3∼23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector , 2003 .

[38]  A. Madhukar,et al.  Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1−xAs strain-relieving quantum wells , 2001 .

[39]  Joe C. Campbell,et al.  Normal incidence InAs/AlxGa1−xAs quantum dot infrared photodetectors with undoped active region , 2001 .

[40]  John David Vincent,et al.  Fundamentals of Infrared Detector Operation and Testing , 1990 .

[41]  S. Krishna Quantum dots-in-a-well infrared photodetectors , 2005 .

[42]  Naoto Horiguchi,et al.  Quantum Dot Infrared Photodetector Using Modulation Doped InAs Self-Assembled Quantum Dots , 1999 .

[43]  Yia-Chung Chang,et al.  Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array☆ , 2007 .

[44]  Victor Ryzhii,et al.  The theory of quantum-dot infrared phototransistors , 1996 .