Estimation Problems with Data from a Mixture

The problem of estimating density functions using data from different distributions, and a mixture of them, is considered. Maximum likelihood and Bayesian parametric techniques are summarized and various approaches using distribution‐free kernel methods are expounded. A comparative study is made using the halibut data of Hosmer (1973) and the problem of incomplete data is briefly discussed.

[1]  D. F. Morrison Expectations and Variances of Maximum Likelihood Estimates of the Multivariate Normal Distribution Parameters with Missing Data , 1971 .

[2]  E. Wegman Nonparametric Probability Density Estimation: I. A Summary of Available Methods , 1972 .

[3]  D. Hosmer A Comparison of Iterative Maximum Likelihood Estimates of the Parameters of a Mixture of Two Normal Distributions Under Three Different Types of Sample , 1973 .

[4]  E. Beale,et al.  Missing Values in Multivariate Analysis , 1975 .

[5]  G. McLachlan Iterative Reclassification Procedure for Constructing An Asymptotically Optimal Rule of Allocation in Discriminant-Analysis , 1975 .

[6]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[7]  D. M. Titterington,et al.  Updating a Diagnostic System using Unconfirmed Cases , 1976 .

[8]  M. J. Fryer Some Errors Associated with the Non-parametric Estimation of Density Functions , 1976 .

[9]  J. Aitchison,et al.  Multivariate binary discrimination by the kernel method , 1976 .

[10]  D. Titterington,et al.  Analysis of incomplete multivariate binary data by the kernel method , 1977 .

[11]  M. J. Fryer A Review of Some Non-parametric Methods of Density Estimation , 1977 .

[12]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[13]  Demetrios Kazakos,et al.  Recursive estimation of prior probabilities using a mixture , 1977, IEEE Trans. Inf. Theory.

[14]  R. Tapia,et al.  Nonparametric Probability Density Estimation , 1978 .

[15]  A. F. Smith,et al.  A Quasi‐Bayes Sequential Procedure for Mixtures , 1978 .

[16]  J. Anderson Multivariate logistic compounds , 1979 .