Two types of sulfur-induced (2 × 1) reconstructions on InP(001)

[1]  D. P. Woodruff,et al.  X-ray standing wave study of wet-etch sulphur-treated InP(100) surfaces , 2000 .

[2]  T. Chassé,et al.  Atomic and electronic structure of epitaxial PbS on InP(110) and InP(001) , 2000 .

[3]  T. Chassé,et al.  Core and valence-level photoemission study of the InP ( 001 ) − ( 2 × 1 ) S surface: Surface structure and electronic states , 2000 .

[4]  R. Hesse,et al.  Peak shape analysis of core level photoelectron spectra using UNIFIT for WINDOWS , 1999 .

[5]  A. C. Ferraz,et al.  Passivation of InP(001) by sulfur , 1999 .

[6]  D. Zahn,et al.  The influence of sulfur on the In/GaAs(100) interface formation , 1999 .

[7]  Z. Lu,et al.  Surface morphology of ex situ sulfur-passivated (1×1) and (2×1) InP(100) surfaces , 1998 .

[8]  ller,et al.  Surface reconstruction of InP(001) upon adsorption of H2S studied by low-energy electron diffraction, scanning tunneling microscopy, high-resolution electron energy loss, and x-ray photoelectron spectroscopies , 1998 .

[9]  H. Peisert,et al.  Sulfur-modified surface of InP(001): Evidence for sulfur incorporation and surface oxidation , 1997 .

[10]  M. Savage,et al.  SU(3) breaking in neutral current axial matrix elements and the spin content of the nucleon , 1996, hep-ph/9611210.

[11]  ller,et al.  Surface structures and electronic states of H2S‐treated InP(001) , 1996 .

[12]  Lewis,et al.  Surface structure, lattice dynamics, and Raman spectroscopy of sulphur passivated InP(001). , 1995, Physical Review Letters.

[13]  N. Sanada,et al.  (NH4)2Sx‐treated InP(001) studied by high‐resolution x‐ray photoelectron spectroscopy , 1994 .

[14]  M. Pashley,et al.  Control of the Fermi‐level position on the GaAs(001) surface: Se passivation , 1994 .

[15]  G. Hollinger,et al.  Chemical, structural, and electronic properties of sulfur‐passivated InP(001) (2×1) surfaces treated with (NH4)2Sx , 1993 .

[16]  Edward Sacher,et al.  S-passivated InP (100)-(1×1) surface prepared by a wet chemical process , 1992 .

[17]  Pashley Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001). , 1989, Physical review. B, Condensed matter.

[18]  J. Harbison,et al.  Molecular‐beam epitaxy growth mechanisms on GaAs(100) surfaces , 1987 .