On the numerical solution of the heat equation I: Fast solvers in free space

We describe a fast solver for the inhomogeneous heat equation in free space, following the time evolution of the solution in the Fourier domain. It relies on a recently developed spectral approximation of the free-space heat kernel coupled with the non-uniform fast Fourier transform. Unlike finite difference and finite element techniques, there is no need for artificial boundary conditions on a finite computational domain. The method is explicit, unconditionally stable, and requires an amount of work of the order O ( NM log N ) , where N is the number of discretization points in physical space and M is the number of time steps. We refer to the approach as the fast recursive marching (FRM) method.

[1]  Martin E. Glicksman,et al.  FUNDAMENTALS OF DENDRITIC SOLIDIFICATION—I. STEADY-STATE TIP GROWTH , 1981 .

[2]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[3]  Martin E. Glicksman,et al.  Overview 12: Fundamentals of dendritic solidification—I. Steady-state tip growth , 1981 .

[4]  John Strain,et al.  Fast Adaptive Methods for the Free-Space Heat Equation , 1994, SIAM J. Sci. Comput..

[5]  Bruce T. Murray,et al.  Adaptive phase-field computations of dendritic crystal growth , 1997 .

[6]  Johannes Tausch,et al.  A fast method for solving the heat equation by layer potentials , 2007, J. Comput. Phys..

[7]  L. Greengard,et al.  A fast algorithm for the evaluation of heat potentials , 1990 .

[8]  Bruce T. Murray,et al.  Simulations of experimentally observed dendritic growth behavior using a phase-field model , 1995 .

[9]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[10]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[11]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[12]  Houde Han,et al.  A class of artificial boundary conditions for heat equation in unbounded domains , 2002 .

[13]  L. Greengard,et al.  The type 3 nonuniform FFT and its applications June - , 2005 .

[14]  Laurence Halpern,et al.  Absorbing boundary conditions for diffusion equations , 1995 .

[15]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[16]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[17]  Houde Han,et al.  Exact and approximating boundary conditions for the parabolic problems on unbounded domains , 2002 .

[18]  L. Greengard,et al.  Short Note: The type 3 nonuniform FFT and its applications , 2005 .

[19]  Witold Pogorzelski,et al.  Integral equations and their applications , 1966 .

[20]  Eric Dubach Artificial boundary conditions for diffusion equations: numerical study , 1996 .

[21]  Yang Xiang,et al.  An integral equation method for epitaxial step-flow growth simulations , 2006, J. Comput. Phys..

[22]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[23]  Karsten Fourmont Non-Equispaced Fast Fourier Transforms with Applications to Tomography , 2003 .

[24]  H. Power,et al.  An Efficient Scheme For BEM For Heat TransferProblems Using Fourier Series , 1999 .

[25]  Leslie Greengard,et al.  Spectral Approximation of the Free-Space Heat Kernel , 2000 .

[26]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[27]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.