Detection of single DNA base differences by competitive oligonucleotide priming.

Synthetic DNA oligonucleotides can serve as efficient primers for DNA synthesis even when there is a single base mismatch between the primers and the corresponding DNA template. However, when the primer-template annealing is carried out with a mixture of primers and at low stringency the binding of a perfectly matched primer is strongly favored relative to a primer differing by a single base. This primer competition is observed over a range of oligonucleotide sizes from twelve to sixteen bases and with a variety of base mismatches. When coupled with the polymerase chain reaction, for the amplification of specific DNA sequences, competitive oligonucleotide priming provides a simple general strategy for the detection of single DNA base differences.