Multireference state-specific coupled-cluster theory and multiconfigurationality index. BH dissociation

Multiconfigurationality index calculated for the coupled-cluster wave function based on an algorithm developed using a computer-aided generation approach is applied to analyze the multireference state-specific coupled-cluster method with the CAS reference (i.e. the so called the CAS( n,m )CCSD approach). The numerical results concern dissociation of the BH molecule where at larger displacement from the equilibrium significant quasi-degeneracy arises. The analysis shows that the CAS( n,m )CCSD approach performs very well in such a situation.

[1]  P. Piecuch,et al.  Complete set of solutions of the generalized Bloch equation , 2000 .

[2]  Rodney J. Bartlett,et al.  Equation-of-motion coupled cluster method with full inclusion of the connected triple excitations for ionized states: IP-EOM-CCSDT , 2003 .

[3]  N. Oliphant,et al.  Converging the single-reference coupled-cluster equations , 1992 .

[4]  Trygve Helgaker,et al.  Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O , 1990 .

[5]  Rodney J. Bartlett,et al.  Equation of motion coupled cluster method for electron attachment , 1995 .

[6]  William Klemperer,et al.  The vibrational second overtones of HF dimer: A quartet , 1994 .

[7]  Nevin Horace Oliphant,et al.  A multireference coupled-cluster method using a single-reference formalism. , 1991 .

[8]  D Mukherjee,et al.  Molecular Applications of a Size-Consistent State-Specific Multireference Perturbation Theory with Relaxed Model-Space Coefficients. , 1999, The journal of physical chemistry. A.

[9]  Anna I. Krylov,et al.  A spin-complete version of the spin-flip approach to bond breaking: What is the impact of obtaining spin eigenfunctions? , 2003 .

[10]  Ludwik Adamowicz,et al.  New approach to the state-specific multireference coupled-cluster formalism , 2000 .

[11]  Ludwik Adamowicz,et al.  The state-selective coupled cluster method for quasi-degenerate electronic states , 1998 .

[12]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[13]  S. Chattopadhyay,et al.  State-specific multi-reference perturbation theories with relaxed coefficients: molecular applications , 2002 .

[14]  R. Bartlett,et al.  Equation-of-motion coupled-cluster calculations of excitation energies. The challenge of ozone , 1999 .

[15]  Karol Kowalski,et al.  Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches , 2002 .

[16]  Ludwik Adamowicz,et al.  The implementation of the multireference coupled‐cluster method based on the single‐reference formalism , 1992 .

[17]  Ivan Hubač,et al.  Size-extensivity correction for the state-specific multireference Brillouin–Wigner coupled-cluster theory , 2000 .

[18]  John D. Watts,et al.  Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies , 1995 .

[19]  J. Gauss,et al.  Spin-restricted open-shell coupled-cluster theory for excited states , 2000 .

[20]  R. Bartlett,et al.  EOMXCC: A New Coupled-Cluster Method for Electronic Excited States , 1999 .

[21]  Jiří Pittner,et al.  Continuous transition between Brillouin-Wigner and Rayleigh-Schrödinger perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled cluster , 2003 .

[22]  Ludwik Adamowicz,et al.  A state-selective multireference coupled-cluster theory employing the single-reference formalism , 1993 .

[23]  Anna I. Krylov,et al.  Excited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles models , 2000 .

[24]  H. Monkhorst,et al.  Some aspects of the time-dependent coupled-cluster approach to dynamic response functions , 1983 .

[25]  L. Adamowicz,et al.  Multireference self‐consistent size‐extensive state‐selective configuration interaction , 1996 .

[26]  So Hirata,et al.  Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis , 2001 .

[27]  Ludwik Adamowicz,et al.  Multireference coupled cluster method for electronic structure of molecules , 1993 .

[28]  L. Adamowicz,et al.  Alternative Multi–reference State–specific Coupled Cluster Wave Functions , 2002 .

[29]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Pseduo-orbital theory applied to spin correlation , 1977 .

[30]  P. Piecuch,et al.  Improved computational strategy for the state‐selective coupled‐cluster theory with semi‐internal triexcited clusters: Potential energy surface of the HF molecule , 1995 .

[31]  J. Brédas,et al.  Coupled-cluster approach for studying the electronic and nonlinear optical properties of conjugated molecules , 2000 .

[32]  Donald C. Comeau,et al.  The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states , 1993 .

[33]  J. Paldus,et al.  Reduced multireference coupled cluster method IV: open-shell systems , 2000 .

[34]  Uttam Sinha Mahapatra,et al.  Development of a size-consistent state-specific multireference perturbation theory with relaxed model-space coefficients , 1999 .

[35]  P. Piecuch,et al.  Solving the single‐reference coupled‐cluster equations involving highly excited clusters in quasidegenerate situations , 1994 .

[36]  P. Piecuch,et al.  State‐selective multireference coupled‐cluster theory: In pursuit of property calculation , 1996 .

[37]  Karol Kowalski,et al.  Renormalized CCSD(T) and CCSD(TQ) approaches: Dissociation of the N2 triple bond , 2000 .

[38]  So Hirata,et al.  High-order determinantal equation-of-motion coupled-cluster calculations for electronic excited states , 2000 .

[39]  John D. Watts,et al.  Iterative and non-iterative triple excitation corrections in coupled-cluster methods for excited electronic states: the EOM-CCSDT-3 and EOM-CCSD(T̃) methods , 1996 .

[40]  Ludwik Adamowicz,et al.  CASCCD: Coupled-cluster method with double excitations and the CAS reference , 2000 .

[41]  J. Malrieu,et al.  State‐specific coupled cluster‐type dressing of multireference singles and doubles configuration interaction matrix , 1996 .

[42]  S. Chattopadhyay,et al.  Property calculations using perturbed orbitals via state-specific multireference coupled-cluster and perturbation theories , 1999 .

[43]  N. Oliphant,et al.  Coupled‐cluster method truncated at quadruples , 1991 .

[44]  Uttam Sinha Mahapatra,et al.  A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications , 1999 .

[45]  Anna I. Krylov,et al.  Second order perturbation corrections to singles and doubles coupled-cluster methods: General theory and application to the valence optimized doubles model , 2000 .

[46]  Karol Kowalski,et al.  The active-space equation-of-motion coupled-cluster methods for excited electronic states: The EOMCCSDt approach , 2000 .

[47]  Uttam Sinha Mahapatra,et al.  A state-specific multi-reference coupled cluster formalism with molecular applications , 1998 .

[48]  Anna I. Krylov,et al.  Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model , 2001 .

[49]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[50]  Rodney J. Bartlett,et al.  Coupled-cluster methods with internal and semi-internal triply and quadruply excited clusters: CCSDt and CCSDtq approaches , 1999 .

[51]  Josef Paldus,et al.  Spin‐adapted multireference coupled‐cluster approach: Linear approximation for two closed‐shell‐type reference configurations , 1988 .

[52]  So Hirata,et al.  High-order coupled-cluster calculations through connected octuple excitations , 2000 .

[53]  L. Adamowicz,et al.  New scheme for solving the amplitude equations in the state-specific coupled cluster theory with complete active space reference for ground and excited states , 2000 .

[54]  Marcel Nooijen,et al.  Towards a general multireference coupled cluster method: automated implementation of open-shell CCSD method for doublet states , 2001 .

[55]  Marcel Nooijen,et al.  Electronic Excitation Spectrum of s-Tetrazine: An Extended-STEOM-CCSD Study , 2000 .

[56]  Josef Paldus,et al.  Time-dependent coupled cluster approach: Excitation energy calculation using an orthogonally spin-adapted formalism , 1986 .

[57]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[58]  J. Paldus,et al.  Direct iterative solution of the generalized Bloch equation. II. A general formalism for many-electron systems , 2000 .

[59]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[60]  P. Mach,et al.  Single-root multireference Brillouin-Wigner coupled-cluster theory: Applicability to the F2 molecule , 1998 .

[61]  J. Malrieu,et al.  Multireference self-consistent size-consistent configuration interaction method. A few applications to ground and excited states , 1995 .

[62]  R. Bartlett,et al.  The inclusion of connected triple excitations in the equation‐of‐motion coupled‐cluster method , 1994 .

[63]  J. Malrieu,et al.  Multireference self‐consistent size‐consistent singles and doubles configuration interaction for ground and excited states , 1994 .

[64]  Jeppe Olsen,et al.  The initial implementation and applications of a general active space coupled cluster method , 2000 .

[65]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[66]  So Hirata,et al.  High-order determinantal equation-of-motion coupled-cluster calculations for ionized and electron-attached states , 2000 .

[67]  Marcel Nooijen,et al.  Brueckner based generalized coupled cluster theory: Implicit inclusion of higher excitation effects , 2000 .

[68]  Kimihiko Hirao,et al.  Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory , 1978 .

[69]  Ludwik Adamowicz,et al.  Automated generation of coupled-cluster diagrams: implementation in the multireference state-specific coupled-cluster approach with the complete-active-space reference. , 2005, The Journal of chemical physics.

[70]  J. Paldus,et al.  Direct iterative solution of the generalized Bloch equation. IV. Application to H2, LiH, BeH, and CH2 , 2000 .

[71]  Marcel Nooijen,et al.  Extended similarity transformed equation-of-motion coupled cluster theory (extended-STEOM-CC): Applications to doubly excited states and transition metal compounds , 2000 .

[72]  Josef Paldus,et al.  Reduced multireference coupled cluster method: Ro-vibrational spectra of N2 , 2000 .

[73]  H. Lischka,et al.  Excitation energies and transition moments by the multireference averaged quadratic coupled cluster (MR-AQCC) method , 2000 .

[74]  P. Piecuch,et al.  BREAKING BONDS WITH THE STATE-SELECTIVE MULTIREFERENCE COUPLED-CLUSTER METHOD EMPLOYING THE SINGLE-REFERENCE FORMALISM , 1995 .

[75]  Rodney J. Bartlett,et al.  Similarity transformed equation-of-motion coupled-cluster study of ionized, electron attached, and excited states of free base porphin , 1997 .

[76]  P. Piecuch,et al.  STATE-SELECTIVE MULTI-REFERENCE COUPLED-CLUSTER THEORY EMPLOYING THE SINGLE-REFERENCE FORMALISM : APPLICATION TO AN EXCITED STATE OF H8 , 1995 .

[77]  J. Paldus,et al.  Truncated version of the reduced multireference coupled‐cluster method with perturbation selection of higher than pair clusters , 2000 .

[78]  L. Adamowicz,et al.  A general bridge between configuration interaction and coupled-cluster methods: a multistate solution , 1996 .

[79]  State-selective multi-reference coupled-cluster theory using multi-configuration self-consistent-field orbitals. A model study on H8 , 1994 .

[80]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .