On the relation between Darboux transformations and polynomial mappings

Abstract Let d μ be a probability measure on [ 0 , + ∞ ) such that its moments are finite. Then the Cauchy–Stieltjes transform S of d μ is a Stieltjes function, which admits an expansion into a Stieltjes continued fraction. In the present paper, we consider a matrix interpretation of the unwrapping transformation S ( λ ) ↦ λ S ( λ 2 ) , which is intimately related to the simplest case of polynomial mappings. More precisely, it is shown that this transformation is essentially a Darboux transformation of the underlying Jacobi matrix. Moreover, in this scheme, the Chihara construction of solutions to the Carlitz problem appears as a shifted Darboux transformation.

[1]  Francisco Marcellán,et al.  Eigenproblems for tridiagonal 2-Toeplitz matrices and quadratic polynomial mappings , 1997 .

[2]  Walter Gautschi,et al.  THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .

[3]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .

[4]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[5]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[6]  M. Ismail,et al.  Sieved orthogonal polynomials. VII. Generalized polynomial mappings , 1993 .

[7]  Generalizations of Chebyshev polynomials and polynomial mappings , 2004, math/0401382.

[8]  H. Langer Spectral functions of definitizable operators in Krein spaces , 1982 .

[9]  Maxim S. Derevyagin,et al.  Spectral problems for generalized Jacobi matrices , 2004 .

[10]  B. Simon The Classical Moment Problem as a Self-Adjoint Finite Difference Operator , 1998, math-ph/9906008.

[11]  Alexei Zhedanov,et al.  Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials , 1994 .

[12]  Luc Vinet,et al.  SPECTRAL TRANSFORMATIONS, SELF-SIMILAR REDUCTIONS AND ORTHOGONAL POLYNOMIALS , 1997 .

[13]  L. Carlitz The relationship of the Hermite to the Laguerre polynomials. , 1961 .

[14]  W. Gautschi,et al.  THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND ( NUMERICAL ) LINEAR ALGEBRA — A TRIBUTE TO GENE , 2002 .

[15]  J. Geronimo,et al.  ORTHOGONAL POLYNOMIALS ON SEVERAL INTERVALS VIA A POLYNOMIAL MAPPING , 1988 .

[16]  L. Vinet,et al.  CMV Matrices and Little and Big −1 Jacobi Polynomials , 2011, 1108.3535.

[17]  Maxim S. Derevyagin,et al.  Darboux transformations of Jacobi matrices and Padé approximation , 2010, 1012.3712.

[18]  T. Chihara On kernel polynomials and related systems. , 1964 .

[19]  V. Derkach,et al.  Convergence of Diagonal Padé Approximants for a Class of Definitizable Functions , 2008, 0809.2391.

[20]  Francisco Marcellán,et al.  Darboux transformation and perturbation of linear functionals , 2004 .

[21]  Maxim S. Derevyagin Generalized Jacobi operators in Krein spaces , 2008, 0806.1283.

[22]  Alexei Zhedanov,et al.  Rational spectral transformations and orthogonal polynomials , 1997 .

[23]  F. Peherstorfer Inverse images of polynomial mappings and polynomials orthogonal on them , 2003 .

[24]  L. Vinet,et al.  Bannai-Ito polynomials and dressing chains , 2012, 1211.1963.

[25]  M. L. Mehta,et al.  Orthogonal polynomials on a family of Cantor sets and the problem of iterations of quadratic mappings , 1982 .

[26]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[27]  P. Forrester,et al.  Classical Skew Orthogonal Polynomials and Random Matrices , 1999, solv-int/9907001.

[28]  Maxim S. Derevyagin,et al.  On the convergence of Padé approximations for generalized Nevanlinna functions , 2007 .

[29]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[30]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .