4.5 tesla magnetic field reduces range of high-energy positrons-potential implications for positron emission tomography

We have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWBM) of the line-spread function (LSP) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography.

[1]  H. Iida,et al.  A Simulation Study of a Method to Reduce Positron Annihilation Spread Distributions Using a Strong Magnetic Field in Positron Emission Tomography , 1986, IEEE Transactions on Nuclear Science.

[2]  K S Pentlow,et al.  Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. , 1991, Medical physics.

[3]  Hans A. Bethe,et al.  Moliere's theory of multiple scattering , 1953 .

[4]  W. W. Moses,et al.  Empirical observation of resolution degradation in positron emission tomographs utilizing block detectors , 1994 .

[5]  G. Muehllehner,et al.  Resolution Limit of Positron Cameras , 1976 .

[6]  Francesco Scopinaro,et al.  Multi-crystal YAP: Ce detector system for position sensitive measurements , 1994 .

[7]  Roger Lecomte,et al.  Design and engineering aspects of a high resolution positron tomograph for small animal imaging , 1994 .

[8]  S. Derenzo,et al.  Resolution limit for positron-imaging devices. , 1977, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[9]  M E Phelps,et al.  Effect of positron range on spatial resolution. , 1975, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[10]  F. Rongen,et al.  The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity , 1995, 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record.

[11]  Z H Cho,et al.  Positron ranges obtained from biomedically important positron-emitting radionuclides. , 1975, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  Marek Szawlowski,et al.  Fast, high density avalanche photodiode array , 1994 .

[13]  R. Wahl,et al.  A fiber-optically coupled positron-sensitive surgical probe. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[14]  S. E. Derenzo,et al.  Precision measurement of annihilation point spread distributions for medically important positron emitters , 1979 .

[15]  Francesco Scopinaro,et al.  YAP multi-crystal gamma camera prototype , 1995 .

[16]  Gert Moliere,et al.  Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld , 1947 .

[17]  Martin J. Berger,et al.  Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons , 1985 .

[18]  Roger Lecomte,et al.  A PET camera simulator with multispectral data acquisition capabilities , 1992 .

[19]  Joel S. Karp,et al.  Design and performance of the HEAD PENN-PET scanner , 1994 .

[20]  Gert Moliere,et al.  Theorie der Streuung schneller geladener Teilchen II Mehrfach-und Vielfachstreuung , 1948 .

[21]  Roger Lecomte,et al.  High resolution positron emission tomography with a prototype camera based on solid state scintillation detectors , 1990 .

[22]  S Weber,et al.  The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity , 1997, IEEE Transactions on Medical Imaging.

[23]  B. Hammer,et al.  Use of a magnetic field to increase the spatial resolution of positron emission tomography. , 1994, Medical physics.

[24]  C K Stone,et al.  Technetium-94m-teboroxime: synthesis, dosimetry and initial PET imaging studies. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  S. Giani,et al.  GEANT Detector Description and Simulation Tool , 1994 .