Constraints on emissions in the Colorado Front Range

Introduction Conclusions References

[1]  B. Lamb,et al.  Comparison of wintertime CO to NOx ratios to MOVES and MOBILE6.2 on-road emissions inventories , 2012 .

[2]  Michael A. Levi Comment on “Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study” by Gabrielle Pétron et al. , 2012 .

[3]  Allison DenBleyker,et al.  Comparison of the MOVES2010a, MOBILE6.2, and EMFAC2007 mobile source emission models with on-road traffic tunnel and remote sensing measurements , 2012, Journal of the Air & Waste Management Association.

[4]  A. Karion,et al.  Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2 , 2012 .

[5]  Gabrielle Pétron,et al.  Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study , 2012 .

[6]  T. Guilderson,et al.  Observations of radiocarbon in CO2at La Jolla, California, USA 1992–2007: Analysis of the long-term trend , 2012 .

[7]  T. Guilderson,et al.  Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles , 2012 .

[8]  N. Gruber,et al.  Continental-scale enrichment of atmospheric 14 CO 2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO 2 , 2011 .

[9]  D. Blake,et al.  Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008 , 2011 .

[10]  A. Karion,et al.  Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009 , 2011 .

[11]  D. Pataki,et al.  A comparison of tracer methods for quantifying CO2 sources in an urban region , 2010 .

[12]  Philippe Ciais,et al.  On the use of 14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model , 2009 .

[13]  Yuyu Zhou,et al.  High resolution fossil fuel combustion CO2 emission fluxes for the United States. , 2009, Environmental science & technology.

[14]  Scot M. Miller,et al.  Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data , 2008 .

[15]  F. Joos,et al.  Modeled natural and excess radiocarbon: Sensitivities to the gas exchange formulation and ocean transport strength , 2008 .

[16]  A. Goldstein,et al.  Biogenic versus anthropogenic sources of CO in the United States , 2008 .

[17]  G. Bishop,et al.  A decade of on-road emissions measurements. , 2008, Environmental science & technology.

[18]  Jeffrey Houk,et al.  Comparing MOBILE6.2 and Emfac2007 Emission Factors , 2008 .

[19]  John B. Miller,et al.  A new high precision 14CO2 time series for North American continental air , 2007 .

[20]  C. Sweeney,et al.  Constraining global air‐sea gas exchange for CO2 with recent bomb 14C measurements , 2007 .

[21]  J. A. de Gouw,et al.  Determination of urban volatile organic compound emission ratios and comparison with an emissions database , 2007 .

[22]  D. Dabdub,et al.  Contribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide levels in two areas of the United States , 2007 .

[23]  J. Randerson,et al.  Regional patterns of radiocarbon and fossil fuel‐derived CO2 in surface air across North America , 2007 .

[24]  U. Karstens,et al.  Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations , 2007 .

[25]  S. Wofsy,et al.  Anthropogenic emissions of nonmethane hydrocarbons in the northeastern United States: Measured seasonal variations from 1992–1996 and 1999–2001 , 2006 .

[26]  T. Guilderson,et al.  Methods for High-Precision 14C AMS Measurement of Atmospheric CO2 at LLNL , 2006, Radiocarbon.

[27]  D. Parrish Critical evaluation of US on-road vehicle emission inventories , 2006 .

[28]  D. Jacob,et al.  Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California , 2004, Journal of Geophysical Research: Atmospheres.

[29]  John C. Lin,et al.  A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model , 2003 .

[30]  M. Mack,et al.  Isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling , 2003 .

[31]  Judith C. Chow,et al.  Review of volatile organic compound source apportionment by chemical mass balance , 2001 .

[32]  James T. Randerson,et al.  Impulse response functions of terrestrial carbon cycle models: method and application , 1999 .

[33]  V. W. J. H. Kirchhoff,et al.  An internally consistent set of globally distributed atmospheric carbon monoxide mixing ratios developed using results from an intercomparison of measurements , 1998 .

[34]  A. Zondervan,et al.  Isotopic characterisation of CO2 sources during regional pollution events using isotopic and radiocarbon analysis , 1996 .

[35]  Pieter P. Tans,et al.  Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network , 1994 .

[36]  S. Montzka,et al.  Global tropospheric distribution and calibration scale of HCFC‐22 , 1993 .

[37]  F. Johnson Half-Life of Radiocarbon. , 1965, Science.

[38]  H. Suess Radiocarbon Concentration in Modern Wood , 1955, Science.

[39]  H. Meijer,et al.  Observation-based estimates of fossil fuel-derived CO 2 emissions in the Netherlands using Delta 14 C , CO and 222 Radon , 2010 .

[40]  S. Lehman,et al.  A New Automated Extraction System for 14C Measurement for Atmospheric Co2 , 2010, Radiocarbon.

[41]  D. Groot,et al.  Handbook of Stable Isotope Analytical Techniques , 2004 .