Measuring the Ellipticity of M87* Images

The Event Horizon Telescope (EHT) images of the supermassive black hole at the center of the galaxy M87 provided the first image of the accretion environment on horizon scales. General relativity (GR) predicts that the image of the shadow should be nearly circular given the inclination angle of the black hole M87*. A robust detection of ellipticity in image reconstructions of M87* could signal new gravitational physics on horizon scales. Here we analyze whether the imaging parameters used in EHT analyses are sensitive to ring ellipticity, and measure the constraints on the ellipticity of M87*. We find that the top set is unable to recover ellipticity. Even for simple geometric models, the true ellipticity is biased low, preferring circular rings. Therefore, to place a constraint on the ellipticity of M87*, we measure the ellipticity of 550 synthetic data sets produced from GRMHD simulations. We find that images with intrinsic axis ratios of 2:1 are consistent with the ellipticity seen from EHT image reconstructions.

[1]  Christopher J. Roberts,et al.  The Event Horizon Explorer mission concept , 2022, Astronomical Telescopes + Instrumentation.

[2]  L. Gurvits,et al.  The science case and challenges of space-borne sub-millimeter interferometry , 2022, Acta Astronautica.

[3]  Daniel C. M. Palumbo,et al.  Variational Image Feature Extraction for the Event Horizon Telescope , 2022, The Astrophysical Journal.

[4]  Michael D. Johnson,et al.  Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon , 2021, The Astrophysical Journal.

[5]  H. Falcke,et al.  Black hole parameter estimation with synthetic very long baseline interferometry data from the ground and from space , 2021, Astronomy & Astrophysics.

[6]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon , 2021, The Astrophysical Journal Letters.

[7]  Daniel C. M. Palumbo,et al.  Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope , 2021, 2102.05482.

[8]  A. Broderick,et al.  Hybrid Very Long Baseline Interferometry Imaging and Modeling with themis , 2020, The Astrophysical Journal.

[9]  D. Psaltis,et al.  A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes , 2019, The Astrophysical Journal.

[10]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[11]  Daniel C. M. Palumbo,et al.  Universal interferometric signatures of a black hole’s photon ring , 2019, Science Advances.

[12]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[13]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019 .

[14]  The Event Horizon Telescope Collaboration First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[15]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[16]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[17]  Mike Innes,et al.  Flux: Elegant machine learning with Julia , 2018, J. Open Source Softw..

[18]  Kazunori Akiyama,et al.  Interferometric Imaging Directly with Closure Phases and Closure Amplitudes , 2018, 1803.07088.

[19]  S. Ikeda,et al.  Superresolution Interferometric Imaging with Sparse Modeling Using Total Squared Variation: Application to Imaging the Black Hole Shadow , 2018, 1802.05783.

[20]  Heino Falcke,et al.  General relativistic magnetohydrodynamical κ-jet models for Sagittarius A , 2017, 1712.02266.

[21]  Kazunori Akiyama,et al.  Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling , 2017, 1702.00424.

[22]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[23]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[24]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[25]  Kazunori Akiyama,et al.  Super-resolution imaging with radio interferometry using sparse modeling , 2014, 1407.2422.

[26]  Yannick Boursier,et al.  Spread spectrum for imaging techniques in radio interferometry , 2009, ArXiv.

[27]  Fred L. Drake,et al.  Python 3 Reference Manual , 2009 .

[28]  P. Vandergheynst,et al.  Compressed sensing imaging techniques for radio interferometry , 2008, 0812.4933.

[29]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[30]  R. Lathe Phd by thesis , 1988, Nature.

[31]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[32]  R. Narayan,et al.  Maximum Entropy Image Restoration in Astronomy , 1986 .

[33]  UvA-DARE (Digital Academic Repository) First Event Horizon Telescope , 2022 .