Hybrid functionals for large periodic systems in an all-electron, numeric atom-centered basis framework

Abstract We describe a framework to evaluate the Hartree–Fock exchange operator for periodic electronic-structure calculations based on general, localized atom-centered basis functions. The functionality is demonstrated by hybrid-functional calculations of properties for several semiconductors. In our implementation of the Fock operator, the Coulomb potential is treated either in reciprocal space or in real space, where the sparsity of the density matrix can be exploited for computational efficiency. Computational aspects, such as the rigorous avoidance of on-the-fly disk storage, and a load-balanced parallel implementation, are also discussed. We demonstrate linear scaling of our implementation with system size by calculating the electronic structure of a bulk semiconductor (GaAs) with up to 1,024 atoms per unit cell without compromising the accuracy.

[1]  Matthias Scheffler,et al.  Hybrid density functional theory meets quasiparticle calculations: A consistent electronic structure approach , 2013 .

[2]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[3]  M. Rossi,et al.  Secondary Structure of Ac-Alan-LysH+ Polyalanine Peptides (n = 5,10,15) in Vacuo: Helical or Not? , 2010, 1005.1228.

[4]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[5]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix , 1997 .

[6]  Lorenzo Maschio,et al.  Local ab initio methods for calculating optical bandgaps in periodic systems. II. Periodic density fitted local configuration interaction singles method for solids. , 2012, The Journal of chemical physics.

[7]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[8]  Filip Tuomisto,et al.  Hybrid functional study of band structures of GaAs 1 − x N x and GaSb 1 − x N x alloys , 2012 .

[9]  Notker Rösch,et al.  Variational fitting methods for electronic structure calculations , 2010 .

[10]  Filip Tuomisto,et al.  Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx Alloys , 2012 .

[11]  Svetlana V. Popova,et al.  Elastic softness of amorphous tetrahedrally bonded GaSb and (Ge 2 ) 0.27 (GaSb) 0.73 semiconductors , 1997 .

[12]  Zhenyu Li,et al.  Implementation of screened hybrid density functional for periodic systems with numerical atomic orbitals: basis function fitting and integral screening. , 2011, The Journal of chemical physics.

[13]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[15]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[16]  Roberto Dovesi,et al.  The Periodic Hartree‐Fock Method and Its Implementation in the CRYSTAL Code , 2000 .

[17]  Yi Li,et al.  Isotropic Landau levels of Dirac fermions in high dimensions , 2011, 1108.5650.

[19]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[20]  Alfredo Pasquarello,et al.  Hybrid-functional calculations with plane-wave basis sets: Effect of singularity correction on total energies, energy eigenvalues, and defect energy levels , 2009, 0909.1648.

[21]  P. Paufler,et al.  Numerical Data and Functional Relationships in Science and Technology - New Series. , 1994 .

[22]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .

[23]  Angel Rubio,et al.  Self-consistent GW: an all-electron implementation with localized basis functions , 2013, 1304.4039.

[24]  Yaochun Shen,et al.  Wavelength modulation spectra of GaAs and silicon , 1970 .

[25]  D R Bowler,et al.  Calculations for millions of atoms with density functional theory: linear scaling shows its potential , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Patrick Merlot,et al.  Attractive electron–electron interactions within robust local fitting approximations , 2013, J. Comput. Chem..

[27]  Christoph Friedrich,et al.  Hybrid functionals within the all-electron FLAPW method: Implementation and applications of PBE0 , 2010, 1003.0524.

[28]  C. Van Alsenoy,et al.  Ab initio calculations on large molecules: The multiplicative integral approximation , 1988 .

[29]  Ortega,et al.  Inverse-photoemission study of Ge(100), Si(100), and GaAs(100): Bulk bands and surface states. , 1993, Physical review. B, Condensed matter.

[30]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[31]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[32]  Alfredo Pasquarello,et al.  Erratum: Hybrid-functional calculations with plane-wave basis sets: Effect of singularity correction on total energies, energy eigenvalues, and defect energy levels [Phys. Rev. B80, 085114 (2009)] , 2010 .

[33]  B. I. Dunlap,et al.  Robust variational fitting: Gáspár's variational exchange can accurately be treated analytically , 2000 .

[34]  Matthias Scheffler,et al.  Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar , 2013 .

[35]  César Tablero,et al.  Development and implementation of the exact exchange method for semiconductors using a localized basis set , 2003 .

[36]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[37]  C. Kittel Introduction to solid state physics , 1954 .

[38]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[39]  Joost VandeVondele,et al.  Robust Periodic Hartree-Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets. , 2009, Journal of chemical theory and computation.

[40]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[41]  J. Wilke,et al.  Die Natur der festen Lsungen der berschssigen Komponenten in unlegiertem Galliumantimonid , 1982 .

[42]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[43]  A. Alavi,et al.  Efficient calculation of the exact exchange energy in periodic systems using a truncated Coulomb potential , 2008 .

[44]  Martin Head-Gordon,et al.  Hartree-Fock exchange computed using the atomic resolution of the identity approximation. , 2008, The Journal of chemical physics.

[45]  Scott B. Baden,et al.  Parallel implementation of γ‐point pseudopotential plane‐wave DFT with exact exchange , 2011, J. Comput. Chem..

[46]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[47]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[48]  Matthias Scheffler,et al.  Large-scale surface reconstruction energetics of Pt(100) and Au(100) by all-electron density functional theory , 2010, 1004.3948.

[49]  R. Braunstein,et al.  Interband Transitions and Exciton Effects in Semiconductors , 1972 .

[50]  Ming C. Wu,et al.  Photoluminescence of high‐quality GaSb grown from Ga‐ and Sb‐rich solutions by liquid‐phase epitaxy , 1992 .

[51]  Denis Usvyat,et al.  Local ab initio methods for calculating optical band gaps in periodic systems. I. Periodic density fitted local configuration interaction singles method for polymers. , 2011, The Journal of chemical physics.

[52]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[53]  Baldereschi,et al.  Self-consistent Hartree-Fock and screened-exchange calculations in solids: Application to silicon. , 1986, Physical review. B, Condensed matter.

[54]  Frederick R. Manby,et al.  Fast local-MP2 method with density-fitting for crystals. II. Test calculations and application to the carbon dioxide crystal , 2007 .

[55]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[56]  Stefan Blügel,et al.  Erratum: HSE hybrid functional within the FLAPW method and its application to GdN [Phys. Rev. B 84, 125142 (2011)] , 2014 .

[57]  A. Tkatchenko,et al.  Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions , 2012, 1201.0655.

[58]  Annabella Selloni,et al.  Order-N implementation of exact exchange in extended insulating systems , 2008, 0812.1322.

[59]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[60]  Kenneth D. Jordan,et al.  Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer , 1994 .

[61]  Georg Kresse,et al.  Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)] , 2006 .

[62]  Sidorov,et al.  Nature of semiconductor-to-metal transition and volume properties of bulk tetrahedral amorphous GaSb and GaSb-Ge semiconductors under high pressure. , 1994, Physical review letters.

[63]  Linear scaling computation of the Fock matrix. VIII. Periodic boundaries for exact exchange at the Gamma point. , 2005, The Journal of chemical physics.

[64]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[65]  Tarricone,et al.  Optical absorption near the fundamental absorption edge in GaSb. , 1995, Physical review. B, Condensed matter.

[66]  Frederick R. Manby,et al.  Fast local-MP2 method with density-fitting for crystals. I. Theory and algorithms , 2007 .

[67]  Jean-Luc Brédas,et al.  Assessment of the performance of tuned range-separated hybrid density functionals in predicting accurate quasiparticle spectra , 2012 .

[68]  Angel Rubio,et al.  Unified description of ground and excited states of finite systems: The self-consistent GW approach , 2012, 1202.3547.

[69]  Christoph Friedrich,et al.  HSE hybrid functional within the FLAPW method and its application to GdN , 2011, 1109.0920.

[70]  Nongnuch Artrith,et al.  High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide , 2011 .

[71]  Joseph E. Subotnik,et al.  Linear scaling density fitting. , 2006, The Journal of chemical physics.

[72]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[73]  Noa Marom,et al.  Strategy for finding a reliable starting point for G 0 W 0 demonstrated for molecules , 2012 .

[74]  Frank P. Billingsley,et al.  Limited Expansion of Diatomic Overlap (LEDO): A Near‐Accurate Approximate Ab Initio LCAO MO Method. I. Theory and Preliminary Investigations , 1971 .

[75]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .