SVG-to-RDF Image Semantization

The goal of this work is to provide an original (semi-automatic) annotation framework titled SVG-to-RDF whichconverts a collection of raw Scalable vector graphic (SVG) images into a searchable semantic-based RDF graph structure that encodes relevant features and contents. Using a dedicated knowledge base, SVG-to-RDF offers the user possible semantic annotations for each geometric object in the image, based on a combination of shape, color, and position similarity measures. Our method presents several advantages, namely i) achieving complete semantization of image content, ii) allowing semantic-based data search and processing using standard RDF technologies, iii) while being compliant with Web standards (i.e., SVG and RDF) in displaying images and annotation results in any standard Web browser, as well as iv) coping with different application domains. Our solution is of linear complexity in the size of the image and knowledge base structures used. Using our prototype SVG2RDF, several experiments have been conducted on a set of panoramic dental x-ray images to underline our approach’s effectiveness, and its applicability to different application domains.

[1]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[2]  Andrew Trotman,et al.  Focused Access to XML Documents, 6th International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2007, Dagstuhl Castle, Germany, December 17-19, 2007. Selected Papers , 2008, INEX.

[3]  Michael G. Strintzis,et al.  An ontology approach to object-based image retrieval , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[4]  Yu Zhou,et al.  Information Retrieval through SVG-based Vector Images Using an Original Method , 2007, IEEE International Conference on e-Business Engineering (ICEBE'07).

[5]  Dong Li,et al.  Shape similarity computation for SVG , 2011, Int. J. Comput. Sci. Eng..

[6]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[7]  E. Prud hommeaux,et al.  SPARQL query language for RDF , 2011 .

[8]  Zhong-Ren Peng,et al.  The roles of geography markup language (GML), scalable vector graphics (SVG), and Web feature service (WFS) specifications in the development of Internet geographic information systems (GIS) , 2004, J. Geogr. Syst..

[9]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[10]  York Sure-Vetter,et al.  Ontology Mapping - An Integrated Approach , 2004, ESWS.

[11]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[12]  Fuhui Long,et al.  Fundamentals of Content-Based Image Retrieval , 2003 .

[13]  K. Wakimoto,et al.  Efficient and Effective Querying by Image Content , 1994 .

[14]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[15]  Abdus Salam,et al.  Revised Aggregation-tree Used in Metadata Extraction from SVG Images , 2006, DMIN.

[16]  Peter Stanchev,et al.  High Level Color Similarity Retrieval , 2003 .

[17]  Xiaoying Bai,et al.  DRESR: Dynamic Routing in Enterprise Service Bus , 2007 .

[18]  Djoerd Hiemstra,et al.  Structured Document Retrieval, Multimedia Retrieval, and Entity Ranking Using PF/Tijah , 2008, INEX.

[19]  Gabriella Kazai Initiative for the Evaluation of XML Retrieval , 2009 .

[20]  Mahsa Kiani,et al.  Ontology-Based Negotiation of Dental Therapy Options , 2010 .

[21]  Patrick A. V. Hall,et al.  Approximate String Matching , 1994, Encyclopedia of Algorithms.

[22]  Sameer Antani,et al.  A hierarchical SVG image abstraction layer for medical imaging , 2010, Medical Imaging.

[23]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[24]  Alan F. Smeaton,et al.  Using WordNet in a Knowledge-Based Approach to Information Retrieval , 1995 .

[25]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[26]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[27]  M. Carter Computer graphics: Principles and practice , 1997 .

[28]  Richard Chbeir,et al.  Towards Digital Image Accessibility for Blind Users Via Vibrating Touch Screen: A Feasibility Test Protocol , 2012, 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems.

[29]  Lora Aroyo,et al.  The Semantic Web: Research and Applications , 2009, Lecture Notes in Computer Science.

[30]  Mohand Boughanem,et al.  XML Multimedia Retrieval: From Relevant Textual Information to Relevant Multimedia Fragments , 2009, ECIR.

[31]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[32]  Enrico Pontelli,et al.  Multimodal Presentation of Two-Dimensional Charts: An Investigation Using Open Office XML and Microsoft Excel , 2010, TACC.

[33]  Shahrul Azman Mohd Noah,et al.  Binding semantic to a sketch based query specification tool , 2009, Int. Arab J. Inf. Technol..

[34]  Lei Zhang,et al.  IGroup: presenting web image search results in semantic clusters , 2007, CHI.

[35]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..