On Serre duality for compact homologically smooth DG algebras

The bounded derived category of coherent sheaves on a smooth projective variety is known to be equivalent to the triangulated category of perfect modules over a DG algebra. DG algebras, arising in this way, have to satisfy some compactness and smoothness conditions. In this paper, we describe a Serre functor on the category of perfect modules over an arbitrary compact and smooth DG algebra and use it to prove the existence of a non-degenerate pairing on the Hochschild homology of the DG algebra. This pairing is an algebraic analog of a well-known pairing on the Hodge cohomology of a smooth projective variety.

[1]  N. Markarian The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem , 2006, math/0610553.

[2]  V. Ginzburg Calabi-Yau algebras , 2006, math/0612139.

[3]  A. Khoroshkin,et al.  Non-commutative Hodge-to-de Rham degeneration via the method of Deligne-Illusie , 2006, math/0611623.

[4]  Bernhard Keller,et al.  On differential graded categories , 2006, math/0601185.

[5]  V. Ginzburg Lectures on Noncommutative Geometry , 2005, math/0506603.

[6]  B. Toën,et al.  Moduli of objects in dg-categories , 2005, math/0503269.

[7]  K. Costello Topological conformal field theories and Calabi–Yau categories , 2004, math/0412149.

[8]  Raphael Rouquier,et al.  Dimensions of triangulated categories , 2003, math/0310134.

[9]  A. Căldăraru,et al.  The Mukai pairing, I: the Hochschild structure , 2003, math/0308079.

[10]  V. Drinfeld DG quotients of DG categories , 2002, math/0210114.

[11]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[12]  Idun Reiten,et al.  Noetherian hereditary abelian categories satisfying Serre duality , 2002 .

[13]  B. Keller On the cyclic homology of exact categories , 1999 .

[14]  B. Keller On the cyclic homology of ringed spaces and schemes , 1998, Documenta Mathematica.

[15]  Michel Van den Bergh,et al.  A RELATION BETWEEN HOCHSCHILD HOMOLOGY AND COHOMOLOGY FOR GORENSTEIN RINGS , 1998 .

[16]  Bernhard Keller,et al.  Invariance and localization for cyclic homology of DG algebras , 1998 .

[17]  D. Quillen,et al.  Algebra extensions and nonsingularity , 1995 .

[18]  J. Bernstein,et al.  Equivariant Sheaves and Functors , 1994 .

[19]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[20]  M. Kapranov,et al.  ENHANCED TRIANGULATED CATEGORIES , 1991 .

[21]  John D. S. Jones,et al.  A∞ algebras and the cyclic bar complex. , 1990 .

[22]  Claude Cibils Hochschild homology of an algebra whose quiver has no oriented cycles , 1986 .