Biomimicking Topographic Elastomeric Petals (E‐Petals) for Omnidirectional Stretchable and Printable Electronics

Elastomeric petals directly replicated from natural rose petal are new versatile substrates for stretchable and printable electronics. Compared with conventional flat polydimethylsiloxane substrates, elastomeric petals have biomimicking topographic surfaces that can effectively inhibit the propagation of microcracks formed in the conducting layer, which is deposited on top, regardless of the type of conductive materials and the deposition methods.

[1]  J. Vanfleteren,et al.  Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits , 2007, IEEE Electron Device Letters.

[2]  Tom Sterken,et al.  Cyclic endurance reliability of stretchable electronic substrates , 2011, Microelectron. Reliab..

[3]  Bart Vandevelde,et al.  Design of Metal Interconnects for Stretchable Electronic Circuits using Finite Element Analysis , 2007, 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007.

[4]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[5]  Yonggang Huang,et al.  Stretchable and compressible thin films of stiff materials on compliant wavy substrates , 2008 .

[6]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[7]  O. Schmidt,et al.  Principles and applications of micro and nanoscale wrinkles , 2010 .

[8]  H. Choi,et al.  Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. , 2010, Nature nanotechnology.

[9]  Zhuang Xie,et al.  Matrix‐Assisted Catalytic Printing for the Fabrication of Multiscale, Flexible, Foldable, and Stretchable Metal Conductors , 2013, Advances in Materials.

[10]  Zhibin Yu,et al.  Elastomeric polymer light-emitting devices and displays , 2013, Nature Photonics.

[11]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[12]  J. Vanfleteren,et al.  Design and Manufacturing of Stretchable High-Frequency Interconnects , 2008, IEEE Transactions on Advanced Packaging.

[13]  Zhigang Suo,et al.  High ductility of a metal film adherent on a polymer substrate , 2005 .

[14]  John A. Rogers,et al.  Materials for stretchable electronics in bioinspired and biointegrated devices , 2012 .

[15]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[17]  C. Bettinger,et al.  Topographic substrates as strain relief features in stretchable organic thin film transistors , 2013 .

[18]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[19]  Lei Jiang,et al.  Recent developments in bio-inspired special wettability. , 2010, Chemical Society reviews.

[20]  Zijian Zheng,et al.  Polymer‐Assisted Metal Deposition (PAMD): A Full‐Solution Strategy for Flexible, Stretchable, Compressible, and Wearable Metal Conductors , 2014, Advanced materials.

[21]  Liyong Niu,et al.  Full‐Solution Processed Flexible Organic Solar Cells Using Low‐Cost Printable Copper Electrodes , 2014, Advanced materials.

[22]  Xiaoming Tao,et al.  A stretchable knitted interconnect for three-dimensional curvilinear surfaces , 2011 .

[23]  Yonggang Huang,et al.  Analytical and Experimental Studies of the Mechanics of Deformation in a Solid With a Wavy Surface Profile , 2010 .

[24]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[25]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[26]  G. S. Jeong,et al.  Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer , 2012, Nature Communications.

[27]  Xuewen Wang,et al.  Silk‐Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals , 2014, Advanced materials.

[28]  Z. Suo,et al.  Stretchability of thin metal films on elastomer substrates , 2004 .

[29]  J. Volakis,et al.  Printing of Patterned Copper on Pliable, Microtextured PDMS/Ceramic Composites , 2008 .

[30]  Jan Vanfleteren,et al.  Reliable stretchable gold interconnects in biocompatible elastomers , 2012 .

[31]  N. Kotov,et al.  Stretchable nanoparticle conductors with self-organized conductive pathways , 2013, Nature.

[32]  Lei Jiang,et al.  Petal effect: a superhydrophobic state with high adhesive force. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[33]  C. Park,et al.  Fabrication of well-controlled wavy metal interconnect structures on stress-free elastomeric substrates , 2014 .

[34]  Xiaolong Wang,et al.  Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms , 2011, Advanced materials.

[35]  Christopher S. Chen,et al.  High‐Conductivity Elastomeric Electronics , 2004 .

[36]  Zhenqiang Ma,et al.  Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. , 2014, Nano letters.

[37]  Unyong Jeong,et al.  Highly Stretchable Patterned Gold Electrodes Made of Au Nanosheets , 2013, Advanced materials.

[38]  John A Rogers,et al.  Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors , 2012, Nature Communications.

[39]  William L. Allen,et al.  Character displacement of Cercopithecini primate visual signals , 2014, Nature Communications.

[40]  John A Rogers,et al.  Stretchable, Multiplexed pH Sensors With Demonstrations on Rabbit and Human Hearts Undergoing Ischemia , 2014, Advanced healthcare materials.

[41]  Zhigang Suo,et al.  Localization of Folds and Cracks in Thin Metal Films Coated on Flexible Elastomer Foams , 2013, Advanced materials.

[42]  Z. Suo,et al.  Channel cracks in a hermetic coating consisting of organic and inorganic layers , 2007 .

[43]  Huisheng Peng,et al.  A highly stretchable, fiber-shaped supercapacitor. , 2013, Angewandte Chemie.

[44]  W. Barthlott,et al.  Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. , 2011, Advances in colloid and interface science.

[45]  Z. Suo,et al.  Mixed mode cracking in layered materials , 1991 .

[46]  Zhuang Xie,et al.  Three‐Dimensional Compressible and Stretchable Conductive Composites , 2014, Advanced materials.

[47]  Z. Suo,et al.  Design and performance of thin metal film interconnects for skin-like electronic circuits , 2004, IEEE Electron Device Letters.