kdecopula: An R Package for the Kernel Estimation of Bivariate Copula Densities
暂无分享,去创建一个
[1] Thomas Nagler. Kernel Methods for Vine Copula Estimation , 2014 .
[2] R. Nelsen. An Introduction to Copulas (Springer Series in Statistics) , 2006 .
[3] Arthur Charpentier,et al. Probit Transformation for Nonparametric Kernel Estimation of the Copula Density , 2014, 1404.4414.
[4] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[5] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[6] I. Gijbels,et al. Positive quadrant dependence tests for copulas , 2010 .
[7] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[8] Gal Elidan,et al. Copulas in Machine Learning , 2013 .
[9] Jeffrey S. Racine,et al. Nonparametric Econometrics: The np Package , 2008 .
[10] C. De Michele,et al. On the Use of Copulas in Hydrology: Theory and Practice , 2007 .
[11] E. Luciano,et al. Copula methods in finance , 2004 .
[12] Colin Aitken,et al. Evaluation of trace evidence in the form of multivariate data , 2004 .
[13] J. Mielniczuk,et al. Estimating the density of a copula function , 1990 .
[14] Jeffrey S. Racine,et al. Mixed data kernel copulas , 2015 .
[15] Olivier Scaillet,et al. The estimation of copulas : theory and practice , 2007 .
[16] C. Genest,et al. A Primer on Copulas for Count Data , 2007, ASTIN Bulletin.
[17] H. Joe. Relative Entropy Measures of Multivariate Dependence , 1989 .
[18] Francesca Cagnacci,et al. The home-range concept: are traditional estimators still relevant with modern telemetry technology? , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.
[19] Thomas Nagler,et al. A generic approach to nonparametric function estimation with mixed data , 2017, Statistics & Probability Letters.
[20] B. Schweizer,et al. On Nonparametric Measures of Dependence for Random Variables , 1981 .
[21] D. Ruppert,et al. Flexible Copula Density Estimation with Penalized Hierarchical B‐splines , 2013 .
[22] Christian Genest,et al. Locally most powerful rank tests of independence for copula models , 2005 .
[23] Christian Habermann,et al. Multidimensional Spline Interpolation: Theory and Applications , 2007 .
[24] Christian Genest,et al. On the empirical multilinear copula process for count data , 2014, 1407.1200.
[25] Claudia Czado,et al. Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas , 2015, J. Multivar. Anal..
[26] Jakob Gulddahl Rasmussen,et al. GMCM: Unsupervised Clustering and Meta-Analysis Using Gaussian Mixture Copula Models , 2016 .
[27] Ximing Wu,et al. Transformation-Kernel Estimation of the Copula Density , 2015 .
[28] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[29] Göran Kauermann,et al. Flexible pair-copula estimation in D-vines using bivariate penalized splines , 2014, Stat. Comput..
[30] P. Embrechts,et al. Dependence modeling with copulas , 2007 .