Improved synthesis of copper oxide nanosheets and its application in development of supercapacitor and antimicrobial agents

[1]  G. Sharma,et al.  Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity , 2015 .

[2]  D. Dubal,et al.  Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors , 2015 .

[3]  Hasna Abdul Salam,et al.  Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[4]  D. Dubal,et al.  Nanoflower-like CuO/Cu(OH)2 hybrid thin films: Synthesis and electrochemical supercapacitive properties , 2014 .

[5]  Mohammad Hossein Habibi,et al.  Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: Kinetic and isotherm study , 2014 .

[6]  F. Mücklich,et al.  Role of copper oxides in contact killing of bacteria. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[7]  Y. M. Al-Waheibi,et al.  Effect of copper loadings on product selectivities in microwave-enhanced degradation of phenol on alumina-supported copper oxides , 2013 .

[8]  D. Lee,et al.  Casein hydrolytic peptides mediated green synthesis of antibacterial silver nanoparticles. , 2013, Colloids and surfaces. B, Biointerfaces.

[9]  T. Thongtem,et al.  Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry , 2013 .

[10]  C. Lokhande,et al.  Decoration of spongelike Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. , 2013, ACS applied materials & interfaces.

[11]  C. Lokhande,et al.  Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties , 2013 .

[12]  A. Christy,et al.  A novel combustion method to prepare CuO nanorods and its antimicrobial and photocatalytic activities , 2013 .

[13]  Kunfeng Chen,et al.  Vapor-phase crystallization route to oxidized Cu foils in air as anode materials for lithium-ion batteries , 2013 .

[14]  Kunfeng Chen,et al.  Nanoparticles via Crystallization: A Chemical Reaction Control Study of Copper Oxides , 2013 .

[15]  Kunfeng Chen,et al.  pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra , 2012 .

[16]  J. Chen,et al.  Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. , 2012, Dalton transactions.

[17]  Unyong Jeong,et al.  Mesoporous CuO Particles Threaded with CNTs for High‐Performance Lithium‐Ion Battery Anodes , 2012, Advanced materials.

[18]  D. Xue,et al.  Crystallization design of MnO2 towards better supercapacitance , 2012 .

[19]  K. Rhee,et al.  Synthesis of activated carbon nanotube/copper oxide composites and their electrochemical performance , 2012 .

[20]  J. L. Gómez‐Cámer,et al.  On the performances of CuxO-TiO2 (x = 1, 2) nanomaterials as innovative anodes for thin film lithium batteries. , 2012, ACS applied materials & interfaces.

[21]  Chandrakant D. Lokhande,et al.  Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor , 2012 .

[22]  Shuli Chen,et al.  Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam , 2011 .

[23]  Q. Shen,et al.  The catanionic surfactant-assisted syntheses of 26-faceted and hexapod-shaped Cu2O and their electrochemical performances , 2011 .

[24]  D. Xue,et al.  Localized crystallization: a chemical transformation of Nb2O5 rod-like arrays into ordered niobate arrays , 2011 .

[25]  D. W. Sheel,et al.  Antimicrobial activity of titania/silver and titania/copper films prepared by CVD , 2010 .

[26]  D. Dhawale,et al.  Fabrication of copper oxide multilayer nanosheets for supercapacitor application , 2010 .

[27]  Li Lu,et al.  Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries , 2010 .

[28]  Hui Xia,et al.  Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. , 2009, Journal of the American Chemical Society.

[29]  Guogang Ren,et al.  Characterisation of copper oxide nanoparticles for antimicrobial applications. , 2009, International journal of antimicrobial agents.

[30]  H. Kwon,et al.  Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials , 2009 .

[31]  Jun Liu,et al.  Thermal Oxidation Strategy towards Porous Metal Oxide Hollow Architectures , 2008 .

[32]  D. Xue,et al.  Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals , 2007 .

[33]  E. Law,et al.  A laboratory method for selection of topical antimicrobial agents to treat infected burn wounds , 1978 .

[34]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .