Local risk-minimization under the benchmark approach

We study the pricing and hedging of derivatives in incomplete financial markets by considering the local risk-minimization method in the context of the benchmark approach, which will be called benchmarked local risk-minimization. We show that the proposed benchmarked local risk-minimization allows to handle under extremely weak assumptions a much richer modeling world than the classical methodology.

[1]  M. Schweizer On the Minimal Martingale Measure and the Foellmer- Schweizer Decomposition , 1995 .

[2]  M. Schweizer,et al.  M-6-On Minimal Market Models and Minimal Martingale Measures , 2010 .

[3]  E. Platen,et al.  Three-Benchmarked Risk Minimization for Jump Diffusion Markets , 2011 .

[5]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[6]  E. Platen Diversified Portfolios with Jumps in a Benchmark Framework , 2004 .

[7]  Kasper Larsen,et al.  No Arbitrage and the Growth Optimal Portfolio , 2007 .

[8]  P. Protter Stochastic integration and differential equations , 1990 .

[9]  Benchmarked Risk Minimization for Jump Diffusion Markets , 2011 .

[10]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[11]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[12]  Constantinos Kardaras,et al.  The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.

[13]  Constantinos Kardaras Market viability via absence of arbitrage of the first kind , 2012, Finance Stochastics.

[14]  J. Kallsen,et al.  A Complete Explicit Solution to the Log-Optimal Portfolio Problem , 2003 .

[15]  John B. Long The numeraire portfolio , 1990 .

[16]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .

[17]  T. Bielecki,et al.  Credit Risk: Modeling, Valuation And Hedging , 2004 .

[18]  Martin Schweizer,et al.  The minimal martingale measure , 2010 .

[19]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[20]  E. Fernholz Stochastic Portfolio Theory , 2002 .

[21]  Christophe Stricker,et al.  Décomposition de Kunita-Watanabe , 1993 .

[22]  R. C. Merton,et al.  AN INTERTEMPORAL CAPITAL ASSET PRICING MODEL , 1973 .

[23]  I. Karatzas,et al.  Stochastic Portfolio Theory: an Overview , 2009 .

[24]  Martin Schweizer,et al.  Hedging of options in a general semimartingale model , 1988 .

[25]  F. Biagini,et al.  PRICING OF UNEMPLOYMENT INSURANCE PRODUCTS WITH DOUBLY STOCHASTIC MARKOV CHAINS , 2012 .

[26]  Local risk minimization and numéraire , 1999 .

[27]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[28]  M. Schweizer A guided tour through quadratic hedging approaches , 1999 .

[29]  F. Biagini Evaluating Hybrid Products: The Interplay Between Financial and Insurance Markets , 2013 .

[30]  D. Heath,et al.  A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets , 2001 .

[31]  C. Dellacherie,et al.  Probabilities and Potential B: Theory of Martingales , 2012 .

[32]  F. Biagini,et al.  Quadratic Hedging Methods for Defaultable Claims , 2007 .

[33]  Dirk Becherer The numeraire portfolio for unbounded semimartingales , 2001, Finance Stochastics.

[34]  David Heath,et al.  Local volatility function models under a benchmark approach , 2006 .