High Dimensional Low Rank Plus Sparse Matrix Decomposition

This paper is concerned with the problem of low-rank plus sparse matrix decomposition for big data. Conventional algorithms for matrix decomposition use the entire data to extract the low-rank and sparse components, and are based on optimization problems with complexity that scales with the dimension of the data, which limits their scalability. Furthermore, existing randomized approaches mostly rely on uniform random sampling, which is quite inefficient for many real world data matrices that exhibit additional structures (e.g., clustering). In this paper, a scalable subspace-pursuit approach that transforms the decomposition problem to a subspace learning problem is proposed. The decomposition is carried out by using a small data sketch formed from sampled columns/rows. Even when the data are sampled uniformly at random, it is shown that the sufficient number of sampled columns/rows is roughly <inline-formula> <tex-math notation="LaTeX">$\mathcal {O}(r \mu)$</tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\mu$</tex-math></inline-formula> is the coherency parameter and <inline-formula> <tex-math notation="LaTeX">$r$</tex-math></inline-formula> is the rank of the low-rank component. In addition, adaptive sampling algorithms are proposed to address the problem of columns/rows sampling from structured data. We provide an analysis of the proposed method with adaptive sampling and show that adaptive sampling makes the required number of sampled columns/rows invariant to the distribution of the data. The proposed approach is amenable to online implementation and an online scheme is proposed.

[1]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[2]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[3]  Malik Magdon-Ismail,et al.  On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..

[4]  Namrata Vaswani,et al.  An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum , 2013, IEEE Transactions on Signal Processing.

[5]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[6]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[7]  Shiqian Ma,et al.  Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization , 2009, Found. Comput. Math..

[8]  I. Jolliffe Principal Component Analysis , 2002 .

[9]  Lieven Vandenberghe,et al.  Interior-Point Method for Nuclear Norm Approximation with Application to System Identification , 2009, SIAM J. Matrix Anal. Appl..

[10]  David P. Woodruff,et al.  Coresets and sketches for high dimensional subspace approximation problems , 2010, SODA '10.

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  Arvind Ganesh,et al.  Fast algorithms for recovering a corrupted low-rank matrix , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[13]  J. Tropp,et al.  Two proposals for robust PCA using semidefinite programming , 2010, 1012.1086.

[14]  M. Habib Probabilistic methods for algorithmic discrete mathematics , 1998 .

[15]  Michael B. Wakin,et al.  Sketched SVD: Recovering Spectral Features from Compressive Measurements , 2012, ArXiv.

[16]  George Atia,et al.  A subspace method for array covariance matrix estimation , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

[17]  Christian Jutten,et al.  Sequential subspace finding: A new algorithm for learning low-dimensional linear subspaces , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[18]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[19]  George Atia,et al.  Randomized Robust Subspace Recovery for High Dimensional Data Matrices , 2015, ArXiv.

[20]  L. Gordon,et al.  Tutorial on large deviations for the binomial distribution. , 1989, Bulletin of mathematical biology.

[21]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[22]  Guangcan Liu,et al.  Recovery of Coherent Data via Low-Rank Dictionary Pursuit , 2014, NIPS.

[23]  John Wright,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[24]  George Atia,et al.  Innovation Pursuit: A New Approach to Subspace Clustering , 2015, IEEE Transactions on Signal Processing.

[25]  Ameet Talwalkar,et al.  Divide-and-Conquer Matrix Factorization , 2011, NIPS.

[26]  Mark A. Davenport,et al.  Random Observations on Random Observations: Sparse Signal Acquisition and Processing , 2010 .

[27]  Trac D. Tran,et al.  A fast and efficient algorithm for low-rank approximation of a matrix , 2009, STOC '09.

[28]  Christos Boutsidis,et al.  An improved approximation algorithm for the column subset selection problem , 2008, SODA.

[29]  C. McDiarmid Concentration , 1862, The Dental register.

[30]  Mark Tygert,et al.  A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..

[31]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[32]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[33]  Namrata Vaswani,et al.  Performance guarantees for ReProCS - Correlated low-rank matrix entries case , 2014, 2014 IEEE International Symposium on Information Theory.

[34]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[35]  Nathan Halko,et al.  An Algorithm for the Principal Component Analysis of Large Data Sets , 2010, SIAM J. Sci. Comput..

[36]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[37]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[38]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[39]  Aswin C. Sankaranarayanan,et al.  SpaRCS: Recovering low-rank and sparse matrices from compressive measurements , 2011, NIPS.

[40]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[42]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[43]  George Atia,et al.  Randomized Robust Subspace Recovery and Outlier Detection for High Dimensional Data Matrices , 2015, IEEE Transactions on Signal Processing.

[44]  Anirban Dasgupta,et al.  A sparse Johnson: Lindenstrauss transform , 2010, STOC '10.

[45]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[46]  Shuicheng Yan,et al.  Online Robust PCA via Stochastic Optimization , 2013, NIPS.

[47]  Richard G. Baraniuk,et al.  Signal Processing With Compressive Measurements , 2010, IEEE Journal of Selected Topics in Signal Processing.

[48]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[49]  Shervin Minaee,et al.  Screen content image segmentation using sparse-smooth decomposition , 2015, 2015 49th Asilomar Conference on Signals, Systems and Computers.

[50]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[51]  Shervin Minaee,et al.  Screen content image segmentation using least absolute deviation fitting , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[52]  Morteza Mardani,et al.  Online sketching for big data subspace learning , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[53]  Xiaoming Yuan,et al.  Sparse and low-rank matrix decomposition via alternating direction method , 2013 .

[54]  Soon Ki Jung,et al.  Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset , 2015, Comput. Sci. Rev..

[55]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[56]  El-hadi Zahzah,et al.  Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing , 2016 .

[57]  George Atia,et al.  Randomized subspace learning approach for high dimensional low rank plus sparse matrix decomposition , 2015, 2015 49th Asilomar Conference on Signals, Systems and Computers.

[58]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[59]  Constantine Caramanis,et al.  Robust Matrix Completion with Corrupted Columns , 2011, ArXiv.

[60]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[61]  George Atia,et al.  A Subspace Learning Approach for High Dimensional Matrix Decomposition with Efficient Column/Row Sampling , 2016, ICML.

[62]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[63]  Christian Jutten,et al.  Recovery of Low-Rank Matrices Under Affine Constraints via a Smoothed Rank Function , 2013, IEEE Transactions on Signal Processing.

[64]  Zhixun Su,et al.  Solving Principal Component Pursuit in Linear Time via $l_1$ Filtering , 2011, ArXiv.

[65]  Sham M. Kakade,et al.  Robust Matrix Decomposition with Outliers , 2010, ArXiv.

[66]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[67]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[68]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[69]  Alfred O. Hero,et al.  Two-Stage Multiscale Search for Sparse Targets , 2011, IEEE Transactions on Signal Processing.

[70]  Jian Dong,et al.  Accelerated low-rank visual recovery by random projection , 2011, CVPR 2011.

[71]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[72]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[73]  Takeo Kanade,et al.  Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[74]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[75]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[76]  V. Rokhlin,et al.  A randomized algorithm for the approximation of matrices , 2006 .

[77]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[78]  S. Shankar Sastry,et al.  Generalized Principal Component Analysis , 2016, Interdisciplinary applied mathematics.

[79]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[80]  George Atia,et al.  Analysis of randomized robust PCA for high dimensional data , 2015, 2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE).

[81]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[82]  Luis Rademacher,et al.  Efficient Volume Sampling for Row/Column Subset Selection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[83]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[84]  Christos Boutsidis,et al.  Unsupervised feature selection for principal components analysis , 2008, KDD.

[85]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[86]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[87]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[88]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[89]  E. Candès,et al.  Compressed sensing and robust recovery of low rank matrices , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[90]  V. Rokhlin,et al.  A fast randomized algorithm for the approximation of matrices ✩ , 2007 .

[91]  Morteza Mardani,et al.  Subspace Learning and Imputation for Streaming Big Data Matrices and Tensors , 2014, IEEE Transactions on Signal Processing.

[92]  Jarvis D. Haupt,et al.  Identifying Outliers in Large Matrices via Randomized Adaptive Compressive Sampling , 2014, IEEE Transactions on Signal Processing.