Strontium doped hydroxyapatite film formed by micro-arc oxidation

[1]  S. Tsutsumi,et al.  Histological evaluation and surface componential analysis of modified micro-arc oxidation-treated titanium implants. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[2]  Fuzhai Cui,et al.  The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. , 2008, Biomaterials.

[3]  T. Kameyama,et al.  Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crystalline orientation. , 2007, Biomaterials.

[4]  W. Lu,et al.  Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[5]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[6]  C. Giordano,et al.  Apatite formation and cellular response of a novel bioactive titanium , 2007, Journal of materials science. Materials in medicine.

[7]  J. Ong,et al.  Effects of applied voltages on hydroxyapatite coating of titanium by electrophoretic deposition. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[8]  M. Maitz,et al.  Plasma-immersion ion-implanted nitinol surface with depressed nickel concentration for implants in blood. , 2006, Journal of biomedical materials research. Part A.

[9]  Hae-Won Kim,et al.  Hydroxyapatite-TiO2 Hybrid Coating on Ti Implants , 2006, Journal of biomaterials applications.

[10]  P. Meunier,et al.  Long‐Term Strontium Ranelate Administration in Monkeys Preserves Characteristics of Bone Mineral Crystals and Degree of Mineralization of Bone , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[11]  Yong Han,et al.  Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium. , 2004, Journal of biomedical materials research. Part A.

[12]  M. Spector,et al.  Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. , 2004, Biomaterials.

[13]  Seong-Hyeon Hong,et al.  Biomimetic apatite coatings on micro-arc oxidized titania. , 2004, Biomaterials.

[14]  Hyoun‐Ee Kim,et al.  Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. , 2004, Biomaterials.

[15]  P. Layrolle,et al.  Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. , 2004, Biomaterials.

[16]  P. Meunier,et al.  Methodological considerations in measurement of bone mineral content , 2003, Osteoporosis International.

[17]  P. Awadalla,et al.  Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata. , 2003, Genetics.

[18]  P. Meunier,et al.  The mineralization of bone tissue: a forgotten dimension in osteoporosis research , 2003, Osteoporosis International.

[19]  R. Cloots,et al.  In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. , 2002, Biomaterials.

[20]  M. Spector,et al.  The ultrastructure of the plasma-sprayed hydroxyapatite-bone interface predisposing to bone bonding. , 2002, Biomaterials.

[21]  C. Christiansen,et al.  Incorporation and distribution of strontium in bone. , 2001, Bone.

[22]  W. Wagner,et al.  Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. , 1999, Biomaterials.

[23]  N. Kolthoff,et al.  Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. , 1997, Bone.

[24]  P. Marie,et al.  Effects of low doses of strontium on bone quality and quantity in rats. , 1990, Bone.