Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex

Lesions of primary visual cortex (V1) lead to loss of conscious visual perception with significant impact on human patients. Understanding the neural consequences of such damage may aid the development of rehabilitation methods. In this rare case of a Rhesus macaque (monkey S), likely born without V1, the animal’s in-group behaviour was unremarkable, but visual task training was impaired. With multi-modal magnetic resonance imaging, visual structures outside of the lesion appeared normal. Visual stimulation under anaesthesia with checkerboards activated lateral geniculate nucleus of monkey S, while full-field moving dots activated pulvinar. Visual cortical activation was sparse but included face patches. Consistently across lesion and control monkeys, functional connectivity analysis revealed an intact network of bilateral dorsal visual areas temporally correlated with V5/MT activation, even without V1. Despite robust subcortical responses to visual stimulation, we found little evidence for strengthened subcortical input to V5/MT supporting residual visual function or blindsight-like phenomena.

[1]  Anna S. Mitchell,et al.  Dissociable Performance on Scene Learning and Strategy Implementation after Lesions to Magnocellular Mediodorsal Thalamic Nucleus , 2007, The Journal of Neuroscience.

[2]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[3]  Nikos K. Logothetis,et al.  Facial-Expression and Gaze-Selective Responses in the Monkey Amygdala , 2007, Current Biology.

[4]  L Weiskrantz,et al.  Visual capacity in the hemianopic field following a restricted occipital ablation. , 1974, Brain : a journal of neurology.

[5]  B. de Gelder,et al.  Looming sensitive cortical regions without V1 input: evidence from a patient with bilateral cortical blindness , 2015, Front. Integr. Neurosci..

[6]  Marco Davare,et al.  Interactions between areas of the cortical grasping network , 2011, Current Opinion in Neurobiology.

[7]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[8]  Kristine Krug,et al.  Neural architectures for stereo vision , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  A. Cowey The blindsight saga , 2009, Experimental Brain Research.

[10]  J. K. Harting,et al.  Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species , 1991, The Journal of comparative neurology.

[11]  Ravi S. Menon,et al.  Isoflurane induces dose‐dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's functional architecture , 2014, Human brain mapping.

[12]  Tristan A. Chaplin,et al.  Robust Visual Responses and Normal Retinotopy in Primate Lateral Geniculate Nucleus following Long-term Lesions of Striate Cortex , 2018, The Journal of Neuroscience.

[13]  N K Humphrey,et al.  Vision in a Monkey without Striate Cortex: A Case Study , 1974, Perception.

[14]  Leslie G. Ungerleider,et al.  Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. , 2009, Journal of neurophysiology.

[15]  Ichiro Fujita,et al.  Reference Frames for Spatial Frequency in Face Representation Differ in the Temporal Visual Cortex and Amygdala , 2011, The Journal of Neuroscience.

[16]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[17]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[18]  David J. Heeger,et al.  Neuronal correlates of perception in early visual cortex , 2003, Nature Neuroscience.

[19]  J. Kaas,et al.  Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? , 1999, The European journal of neuroscience.

[20]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[21]  J. Haselgrove,et al.  Decreased Lateral Geniculate Nucleus Activation in Retrogeniculate Hemianopia Demonstrated by Functional Magnetic Resonance Imaging at 4 Tesla , 2005, Ophthalmologica.

[22]  Daniel S. Margulies,et al.  Inter-individual Variability of Functional Connectivity in Awake and Anesthetized Rhesus Monkeys , 2019, bioRxiv.

[23]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[24]  M. Goodale,et al.  More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury , 2017, Neuropsychologia.

[25]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[26]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[27]  David A Leopold,et al.  Primary visual cortex: awareness and blindsight. , 2012, Annual review of neuroscience.

[28]  J. Pillai Functional Connectivity. , 2017, Neuroimaging clinics of North America.

[29]  Alexis Hervais-Adelman,et al.  Amygdala Activation for Eye Contact Despite Complete Cortical Blindness , 2013, The Journal of Neuroscience.

[30]  A. J. Parker,et al.  Individual Differences in the Alignment of Structural and Functional Markers of the V5/MT Complex in Primates , 2016, Cerebral cortex.

[31]  J. Bourne,et al.  Neuroanatomy Original Research Article Materials and Methods , 2022 .

[32]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[33]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  Semir Zeki,et al.  The primary visual cortex, and feedback to it, are not necessary for conscious vision. , 2011, Brain : a journal of neurology.

[35]  H. Bridge,et al.  Novel brain imaging approaches to understand acquired and congenital neuro-ophthalmological conditions. , 2014, Current opinion in neurology.

[36]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[37]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[38]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[39]  Y. Miyashita,et al.  Functional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks Comparison of Cortical Eye Fields with Humans , 2004, Neuron.

[40]  Petra Stoerig,et al.  Blindsight, conscious vision, and the role of primary visual cortex. , 2006, Progress in brain research.

[41]  Markus Diesmann,et al.  Multi-scale account of the network structure of macaque visual cortex , 2017, Brain Structure and Function.

[42]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[43]  Leo L. Lui,et al.  Neuronal degeneration in the dorsal lateral geniculate nucleus following lesions of primary visual cortex: comparison of young adult and geriatric marmoset monkeys , 2017, Brain Structure and Function.

[44]  G. Riddoch On the Relative Perceptions of Movement and a Stationary Object in Certain Visual Disturbances due to Occipital Injuries , 1917, Proceedings of the Royal Society of Medicine.

[45]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Egan,et al.  Preservation of Vision by the Pulvinar following Early-Life Primary Visual Cortex Lesions , 2015, Current Biology.

[47]  Rogier B Mars,et al.  Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex , 2013, Proceedings of the National Academy of Sciences.

[48]  Nikos K. Logothetis,et al.  Organization of area hV5/MT+ in subjects with homonymous visual field defects , 2018, NeuroImage.

[49]  Doris Y. Tsao,et al.  Anatomical Connections of the Functionally Defined “Face Patches” in the Macaque Monkey , 2016, Neuron.

[50]  Geraint Rees,et al.  Abnormal Contrast Responses in the Extrastriate Cortex of Blindsight Patients , 2015, The Journal of Neuroscience.

[51]  R. Wurtz,et al.  Functional Identification of a Pulvinar Path from Superior Colliculus to Cortical Area MT , 2010, The Journal of Neuroscience.

[52]  H. Bridge,et al.  Blindsight and Unconscious Vision: What They Teach Us about the Human Visual System , 2017, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[53]  C G Gross,et al.  Greater residual vision in monkeys after striate cortex damage in infancy. , 1996, Journal of neurophysiology.

[54]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[55]  H. Bridge,et al.  Imaging reveals optic tract degeneration in hemianopia. , 2011, Investigative ophthalmology & visual science.

[56]  Anna S. Mitchell,et al.  Effective chair training methods for neuroscience research involving rhesus macaques (Macaca mulatta) , 2019, Journal of Neuroscience Methods.

[57]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[58]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[59]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[61]  G. Dutton,et al.  Impact of Cerebral Visual Impairments on Motor Skills: Implications for Developmental Coordination Disorders , 2016, Front. Psychol..

[62]  A. Parker,et al.  Structural and Functional Changes across the Visual Cortex of a Patient with Visual Form Agnosia , 2013, The Journal of Neuroscience.

[63]  Ning Liu,et al.  Oxytocin modulates fMRI responses to facial expression in macaques , 2015, Proceedings of the National Academy of Sciences.

[64]  Ariel Rokem,et al.  Human blindsight is mediated by an intact geniculo-extrastriate pathway , 2015, eLife.

[65]  Christopher Kennard,et al.  Visual activation of extra-striate cortex in the absence of V1 activation , 2010, Neuropsychologia.

[66]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[67]  M. Petrides,et al.  The human ventromedial prefrontal cortex sulcal morphology and its influence on its functional organization , 2018, bioRxiv.

[68]  Ravi S. Menon,et al.  Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. , 2012, Journal of neurophysiology.

[69]  A. Hendrickson,et al.  Retrograde transneuronal degeneration in the retina and lateral geniculate nucleus of the V1-lesioned marmoset monkey , 2013, Brain Structure and Function.

[70]  Bernard M. C. Stienen,et al.  Intact navigation skills after bilateral loss of striate cortex , 2008, Current Biology.

[71]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[72]  Margaret T. T. Wong-Riley,et al.  Projections from the dorsal lateral geniculate nucleus to prestriate cortex in the squirrel monkey as demonstrated by retrograde transport of horseradish peroxidase , 1976, Brain Research.

[73]  Robert Desimone,et al.  Subcortical connections of area V4 in the macaque , 2000, The Journal of comparative neurology.

[74]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[75]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[76]  Geraint Rees,et al.  Motion area V5/MT+ response to global motion in the absence of V1 resembles early visual cortex , 2014, Brain : a journal of neurology.

[77]  Rainer Goebel,et al.  Psychophysical and neuroimaging responses to moving stimuli in a patient with the Riddoch phenomenon due to bilateral visual cortex lesions , 2019, Neuropsychologia.

[78]  J. Maunsell,et al.  Visual effects of lesions of cortical area V2 in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  Kimmy Tang-Wright Visual topography and perceptual learning in the primate visual system , 2016 .

[80]  Saâd Jbabdi,et al.  Changes in connectivity after visual cortical brain damage underlie altered visual function. , 2008, Brain : a journal of neurology.

[81]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[82]  Jon H. Kaas,et al.  Pulvinar contributions to the dorsal and ventral streams of visual processing in primates , 2007, Brain Research Reviews.

[83]  Georgios A. Keliris,et al.  Organization of area hV 5 / MT þ in subjects with homonymous visual fi eld defects , 2018 .

[84]  M. Goodale Transforming vision into action , 2011, Vision Research.

[85]  David A. Leopold,et al.  A population MRI brain template and analysis tools for the macaque , 2017, NeuroImage.

[86]  D. Giaschi,et al.  Conscious visual abilities in a patient with early bilateral occipital damage , 2003, Developmental medicine and child neurology.

[87]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[88]  Leslie G. Ungerleider,et al.  Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex , 2008, Proceedings of the National Academy of Sciences.

[89]  Adam G. Thomas,et al.  The Organization of Dorsal Frontal Cortex in Humans and Macaques , 2013, The Journal of Neuroscience.

[90]  Nikos K. Logothetis,et al.  Validation of High-Resolution Tractography Against In Vivo Tracing in the Macaque Visual Cortex , 2015, Cerebral cortex.

[91]  Robert D. Rafal,et al.  Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography , 2015, Journal of neurophysiology.

[92]  David A. Leopold,et al.  Blindsight depends on the lateral geniculate nucleus , 2010, Nature.