Catalytic 1,4-selective hydrosilylation of pyridines and benzannulated congeners.

Radically different! The hydrosilylation of pyridines and quinolines is strictly 1,4-selective and likely involves an ionic one-step rather than the established radical two-step hydride transfer from a ruthenium(II) hydride complex onto the respective pyridinium and quinolinium ion intermediates (see scheme; Ar(F) =3,5-(CF3)2C6H3). Even 4-substituted substrates react highly regioselectively. Isoquinolines yield the 1,2-reduced heterocycles.

[1]  M. Müller,et al.  Catalytic dehydrogenative Si-N coupling of pyrroles, indoles, carbazoles as well as anilines with hydrosilanes without added base. , 2013, Chemical communications.

[2]  T. Stahl,et al.  C(sp3)-F bond activation of CF3-substituted anilines with catalytically generated silicon cations: spectroscopic evidence for a hydride-bridged Ru-S dimer in the catalytic cycle. , 2013, Journal of the American Chemical Society.

[3]  Y. Ohki,et al.  Base-free dehydrogenative coupling of enolizable carbonyl compounds with silanes. , 2012, Organic letters.

[4]  M. Suginome,et al.  Regioselective synthesis of 1,2-dihydropyridines by rhodium-catalyzed hydroboration of pyridines. , 2012, Journal of the American Chemical Society.

[5]  G. Kociok‐Köhn,et al.  Magnesium-Catalyzed Hydroboration of Pyridines , 2011 .

[6]  Yong‐Gui Zhou,et al.  Biomimetic asymmetric hydrogenation: in situ regenerable Hantzsch esters for asymmetric hydrogenation of benzoxazinones. , 2011, Journal of the American Chemical Society.

[7]  M. Suginome,et al.  Palladium-catalyzed regioselective silaboration of pyridines leading to the synthesis of silylated dihydropyridines. , 2011, Journal of the American Chemical Society.

[8]  K. Osakada 1,4‐Hydrosilylierung von Pyridin mit einem Rutheniumkatalysator: eine neue Reaktion und ihr Mechanismus , 2011 .

[9]  K. Osakada 1,4-Hydrosilylation of pyridine by ruthenium catalyst: a new reaction and mechanism. , 2011, Angewandte Chemie.

[10]  Y. Ohki,et al.  Cooperative catalytic activation of Si-H bonds by a polar Ru-S bond: regioselective low-temperature C-H silylation of indoles under neutral conditions by a Friedel-Crafts mechanism. , 2011, Journal of the American Chemical Society.

[11]  D. Gutsulyak,et al.  Facile catalytic hydrosilylation of pyridines. , 2011, Angewandte Chemie.

[12]  Frank Hollmann,et al.  Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods , 2010 .

[13]  Preston A. Chase,et al.  Metal-free reductions of N-heterocycles via Lewis acid catalyzed hydrogenation. , 2010, Chemical communications.

[14]  J. Norton,et al.  Using a two-step hydride transfer to achieve 1,4-reduction in the catalytic hydrogenation of an acyl pyridinium cation. , 2008, Journal of Organic Chemistry.

[15]  Y. Ohki,et al.  Reactions at the Ru-S bonds of coordinatively unsaturated ruthenium complexes with tethered 2,6-dimesitylphenyl thiolate. , 2008, Chemistry, an Asian journal.

[16]  Scott J. Miller,et al.  Selective partial reduction of quinolines: Hydrosilylation vs. transfer hydrogenation , 2008 .

[17]  D. MacMillan,et al.  Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. , 2007, Accounts of chemical research.

[18]  M. Ziegler,et al.  The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. , 2007, The Biochemical journal.

[19]  Y. Ni,et al.  Enantioselective organocatalytic reductive amination. , 2006, Journal of the American Chemical Society.

[20]  B. List,et al.  A powerful Brønsted acid catalyst for the organocatalytic asymmetric transfer hydrogenation of imines. , 2005, Angewandte Chemie.

[21]  M. Rueping,et al.  Enantioselective Brønsted acid catalyzed transfer hydrogenation: organocatalytic reduction of imines. , 2005, Organic letters.

[22]  R. Lavilla Recent developments in the chemistry of dihydropyridines , 2002 .

[23]  Ronghua Shu,et al.  Titanocene(III) catalyzed homogeneous hydrosilation-hydrogenation of pyridines , 2001 .

[24]  T. Donohoe,et al.  Use of dissolving metals in the partial reduction of pyridines: formation of 2-alkyl-1,2-dihydropyridines , 2001 .

[25]  Donohoe,et al.  Partial reduction of electron-deficient pyridines , 2000, Organic letters.

[26]  Y. Mu,et al.  Homogeneous Catalytic Hydrosilylation of Pyridines. , 1998, Angewandte Chemie.

[27]  Anne-Marie Lebuis,et al.  Homogen katalysierte Hydrosilylierung von Pyridinen , 1998 .

[28]  M. Newcomb Competition methods and scales for alkyl radical reaction kinetics , 1993 .

[29]  J. G. Keay Partial and Complete Reduction of Pyridines and their Benzo Analogs , 1991 .

[30]  J. G. Keay The Reduction of Nitrogen Heterocycles with Complex Metal Hydrides , 1986 .

[31]  D. Stout,et al.  Recent advances in the chemistry of dihydropyridines , 1982 .

[32]  D. Griller,et al.  Free-radical clocks , 1980 .

[33]  A. Birch,et al.  Preparation of some N-substituted 1,4-dihydropyridines by metal–ammonia reactions , 1975 .

[34]  J. Kuthan,et al.  Chemistry of dihydropyridines , 1972 .

[35]  S. Danishefsky,et al.  A ready synthesis of (±)-D-homo-oestrone , 1972 .

[36]  J. E. Lyons,et al.  Dihydropyridines from Silylation of Pyridines , 1966 .

[37]  B. Shaw 61. The preparation of 1 : 5-dioximes from pyridine bases , 1937 .

[38]  B. Shaw XXXVI.—Fission of the pyridine nucleus during reduction. Part II. The preparation of glutardialdoxime , 1925 .