Electronics based on two-dimensional materials.

The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

[1]  Kyeongjae Cho,et al.  Photon-Assisted CVD Growth of Graphene Using Metal Adatoms As Catalysts , 2012 .

[2]  D. Akinwande,et al.  Three-Gigahertz Graphene Frequency Doubler on Quartz Operating Beyond the Transit Frequency , 2012, IEEE Transactions on Nanotechnology.

[3]  Yoshio Nishi,et al.  DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. , 2006, Journal of the American Chemical Society.

[4]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[5]  Luigi Colombo,et al.  Contact resistance in few and multilayer graphene devices , 2010 .

[6]  D. Jena,et al.  Single-particle tunneling in doped graphene-insulator-graphene junctions , 2011, 1108.4881.

[7]  Debdeep Jena,et al.  Tunneling Transistors Based on Graphene and 2-D Crystals , 2013, Proceedings of the IEEE.

[8]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[9]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[10]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[11]  R. Ghosh,et al.  Monolayer Transition Metal Dichalcogenide Channel-Based Tunnel Transistor , 2013, IEEE Journal of the Electron Devices Society.

[12]  F. Xia,et al.  The origins and limits of metal-graphene junction resistance. , 2011, Nature nanotechnology.

[13]  Peide D. Ye,et al.  ${\rm MoS}_{2}$ Field-Effect Transistors With Graphene/Metal Heterocontacts , 2014, IEEE Electron Device Letters.

[14]  Krishna C. Saraswat,et al.  Thin film MOSFET's fabricated in laser-annealed polycrystalline silicon , 1979 .

[15]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[16]  R. Chau,et al.  Carrier Transport in High-Mobility III–V Quantum-Well Transistors and Performance Impact for High-Speed Low-Power Logic Applications , 2008, IEEE Electron Device Letters.

[17]  Peide D. Ye,et al.  Extraction of Channel Electron Effective Mobility in InGaAs/Al $_{\bf 2}$O$_{\bf 3}$ n-FinFETs , 2013, IEEE Transactions on Nanotechnology.

[18]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[19]  Sergei Rouvimov,et al.  Remote plasma assisted growth of graphene films: structure and physical properties , 2010 .

[20]  W. Deal,et al.  Sub 50 nm InP HEMT Device with Fmax Greater than 1 THz , 2007, 2007 IEEE International Electron Devices Meeting.

[21]  Wei Zhang,et al.  Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. , 2013, Nano letters.

[22]  Kazimierz Przybylski,et al.  Defect structure and electrical properties of molybdenum disulphide , 2006 .

[23]  Claire J. Carmalt,et al.  Atmospheric pressure chemical vapour deposition of WS2 thin films on glass , 2003 .

[24]  Nagashima,et al.  Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. , 1995, Physical review letters.

[25]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[26]  Frank Schwierz,et al.  Graphene Transistors: Status, Prospects, and Problems , 2013, Proceedings of the IEEE.

[27]  J. Scheytt,et al.  Vertical Graphene Base Transistor , 2011, IEEE Electron Device Letters.

[28]  Dapeng Yu,et al.  Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation , 2013, Scientific Reports.

[29]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[30]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[31]  Koichi Maezawa,et al.  Effective Mobility Enhancement in Al2O3/InSb/Si Quantum Well Metal Oxide Semiconductor Field Effect Transistors for Thin InSb Channel Layers , 2013 .

[32]  P. Kim,et al.  Quantum interference and Klein tunnelling in graphene heterojunctions , 2008, Nature Physics.

[33]  Sungjae Cho,et al.  Insulating behavior in ultrathin bismuth selenide field effect transistors. , 2011, Nano letters.

[34]  Francesco Bonaccorso,et al.  Multiwall nanotubes, multilayers, and hybrid nanostructures: new frontiers for technology and Raman spectroscopy. , 2013, ACS nano.

[35]  S. Kishimoto,et al.  Flexible high-performance carbon nanotube integrated circuits. , 2011, Nature nanotechnology.

[36]  Luca Maiolo,et al.  Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic , 2008 .

[37]  Dewei Xu,et al.  High-performance flexible thin-film transistors exfoliated from bulk wafer. , 2012, Nano letters.

[38]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[39]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[40]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[41]  Y. Nishi,et al.  High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-to-band tunneling leakage: experiments , 2006, IEEE Transactions on Electron Devices.

[42]  T. Fukai,et al.  45-nm gate length CMOS technology and beyond using steep halo , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[43]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Daniel John Blackwood,et al.  An EIS Investigation into the Influence of HF Concentration on Porous Silicon Formation , 2014 .

[45]  Kestutis Grigoras,et al.  Carbon nanotube thin film transistors based on aerosol methods , 2009, Nanotechnology.

[46]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[47]  Andrei B. Sushkov,et al.  Strong surface scattering in ultrahigh mobility Bi2Se3 topological insulator crystals , 2010, 1003.2382.

[48]  P. D. Ye,et al.  Top-gated graphene field-effect-transistors formed by decomposition of SiC , 2008, 0802.4103.

[49]  Kazuro Kikuchi Coherent Optical Communications: Historical Perspectives and Future Directions , 2010 .

[50]  Robert H. Dennard,et al.  Design of ion-implanted MOSFET's with very small physical dimensions , 2007 .

[51]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[52]  Mario G. Ancona,et al.  High-mobility Carbon-nanotube Thin-film Transistors on a Polymeric Substrate , 2005 .

[53]  G. Curello,et al.  A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications , 2012, 2012 International Electron Devices Meeting.

[54]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[55]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[56]  Daniel Schall,et al.  Integrated Ring Oscillators based on high-performance Graphene Inverters , 2013, Scientific Reports.

[57]  Zhipei Sun,et al.  Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics , 2014 .

[58]  Bo Liu,et al.  High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide , 2014, Nature Communications.

[59]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[60]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[61]  J. Stake,et al.  A 30-GHz Integrated Subharmonic Mixer Based on a Multichannel Graphene FET , 2013, IEEE Transactions on Microwave Theory and Techniques.

[62]  X. Liang,et al.  Ultraviolet/ozone treatment to reduce metal-graphene contact resistance , 2012, 1212.0838.

[63]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[64]  A. Green,et al.  Solution phase production of graphene with controlled thickness via density differentiation. , 2009, Nano letters.

[65]  R. Solanki,et al.  Remote Plasma Assisted Growth of Graphene Films , 2010 .

[66]  Giuseppe Iannaccone,et al.  Bilayer Graphene Transistors for Analog Electronics , 2014, IEEE Transactions on Electron Devices.

[67]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[68]  Debdeep Jena,et al.  Interband Tunneling in 2D Crystal Semiconductors , 2013 .

[69]  Mengwei Si,et al.  Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. , 2013, Nano letters.

[70]  Jiwon Chang,et al.  Topological insulator Bi2Se3 thin films as an alternative channel material in MOSFETs , 2012 .

[71]  Yuechan Kong,et al.  Monolithic integrated enhancement/depletion-mode AlGaN/GaN high electron mobility transistors with cap layer engineering , 2013 .

[72]  Han Wang,et al.  Graphene-Based Ambipolar RF Mixers , 2010, IEEE Electron Device Letters.

[73]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[74]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[75]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[76]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[77]  Y. Naveh,et al.  Modeling of 10-nm-scale ballistic MOSFET's , 2000, IEEE Electron Device Letters.

[78]  F. Longo,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009 .

[79]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.

[80]  Laura Polloni,et al.  Graphene audio voltage amplifier. , 2012, Small.

[81]  Vivek Subramanian,et al.  Sub-50nm FinFET : PMOS , 1999 .

[82]  Alberto Valdes Garcia,et al.  Graphene radio frequency receiver integrated circuit , 2014, Nature Communications.

[83]  G. Dewey,et al.  Fabrication, characterization, and physics of III–V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing , 2011, 2011 International Electron Devices Meeting.

[84]  Wei Zhang,et al.  Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. , 2010, ACS nano.

[85]  C. Hu,et al.  Germanium-source tunnel field effect transistors with record high ION/IOFF , 2006, 2009 Symposium on VLSI Technology.

[86]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[87]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[88]  G. Dewey,et al.  High mobility strained germanium quantum well field effect transistor as the p-channel device option for low power (Vcc = 0.5 V) III–V CMOS architecture , 2010, 2010 International Electron Devices Meeting.

[89]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[90]  Michael C. McAlpine,et al.  Graphene-based wireless bacteria detection on tooth enamel , 2012, Nature Communications.

[91]  Gianaurelio Cuniberti,et al.  Direct low-temperature nanographene CVD synthesis over a dielectric insulator. , 2010, ACS nano.

[92]  Francesco Bonaccorso,et al.  Brownian motion of graphene. , 2010, ACS nano.

[93]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[94]  G. Fiori,et al.  Velocity saturation in few-layer MoS2 transistor , 2013 .

[95]  Chien-Cheng Chang,et al.  Low-temperature grown graphene films by using molecular beam epitaxy , 2012 .

[96]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[97]  Zhixian Chen,et al.  Vertical Si-Nanowire $n$-Type Tunneling FETs With Low Subthreshold Swing ($\leq \hbox{50}\ \hbox{mV/decade}$ ) at Room Temperature , 2011, IEEE Electron Device Letters.

[98]  J. Kong,et al.  pH sensing properties of graphene solution-gated field-effect transistors , 2013 .

[99]  Yoshiaki Nakano,et al.  Ultrathin Body InGaAs-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors with InP Passivation Layers on Si Substrates Fabricated by Direct Wafer Bonding , 2011 .

[100]  D. Nezich,et al.  Graphene Frequency Multipliers , 2009, IEEE Electron Device Letters.

[101]  C. Dimitrakopoulos,et al.  State-of-the-art graphene high-frequency electronics. , 2012, Nano letters.

[102]  Markus Voelter,et al.  State of the Art , 1997, Pediatric Research.

[103]  Max C. Lemme,et al.  Direct graphene growth on insulator , 2011, 1106.2070.

[104]  Ravi Pillarisetty High mobility strained p-channel germanium quantum well field effect transistor for low power (Vcc = 0.5 V) III–V CMOS applications , 2011, 69th Device Research Conference.

[105]  Kaustav Banerjee,et al.  Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (≤ 50 mV/decade) at Room Temperature , 2011 .

[106]  Charles Darwin,et al.  Experiments , 1800, The Medical and physical journal.

[107]  Masataka Nakazawa,et al.  High Spectral Density Optical Communication Technologies , 2010 .

[108]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[109]  R. Chau,et al.  A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.

[110]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[111]  T. Fukui,et al.  Steep-slope tunnel field-effect transistors using III–V nanowire/Si heterojunction , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[112]  G. Dewey,et al.  Electrostatics improvement in 3-D tri-gate over ultra-thin body planar InGaAs quantum well field effect transistors with high-K gate dielectric and scaled gate-to-drain/gate-to-source separation , 2011, 2011 International Electron Devices Meeting.

[113]  A. Schmitz,et al.  High-Speed 501-Stage DCFL GaN Ring Oscillator Circuits , 2013, IEEE Electron Device Letters.

[114]  K. Shepard,et al.  Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. , 2013, Nano letters.

[115]  S. Takagi,et al.  Experimental study on electron mobility in ultrathin-body silicon-on-insulator metal-oxide-semiconductor field-effect transistors , 2007 .

[116]  A. M. van der Zande,et al.  Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. , 2012, Nano letters.

[117]  G. Privitera,et al.  Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation , 2010 .

[118]  Byung-Sung Kim,et al.  Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium , 2014, Science.

[119]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[120]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[121]  S. Joo,et al.  Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization , 1996, IEEE Electron Device Letters.

[122]  J. Appenzeller,et al.  Band-to-band tunneling in carbon nanotube field-effect transistors. , 2004, Physical review letters.

[123]  J. Kong,et al.  Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance , 2011, IEEE Electron Device Letters.

[124]  Chun Li,et al.  Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS. , 2012, ACS nano.

[125]  J. Rogers,et al.  Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals , 2004, Science.

[126]  Linus Pauling,et al.  The Crystal Structure of Molybdenite , 1923 .

[127]  Eric Pop,et al.  High-field electrical and thermal transport in suspended graphene. , 2013, Nano letters.

[128]  Juana Vivó Acrivos,et al.  Optical studies of metal-semiconductor transmutations produced by intercalation , 1971 .

[129]  Lucas H. Hess,et al.  Graphene Solution‐Gated Field‐Effect Transistor Array for Sensing Applications , 2010 .

[130]  R. Dong,et al.  Record maximum oscillation frequency in C-face epitaxial graphene transistors. , 2013, Nano letters.

[131]  James Hone,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[132]  O. Faynot,et al.  Strained tunnel FETs with record ION: first demonstration of ETSOI TFETs with SiGe channel and RSD , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[133]  H. Kurz,et al.  Current saturation and voltage gain in bilayer graphene field effect transistors. , 2012, Nano letters.

[134]  G. Iannaccone,et al.  Insights on radio frequency bilayer graphene FETs , 2012, 2012 International Electron Devices Meeting.

[135]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[136]  Qin Zhang,et al.  Low-Voltage Tunnel Transistors for Beyond CMOS Logic , 2010, Proceedings of the IEEE.

[137]  C. Rutherglen,et al.  Nanotube electronics for radiofrequency applications. , 2009, Nature nanotechnology.

[138]  K. Shepard,et al.  Current saturation in zero-bandgap, top-gated graphene field-effect transistors. , 2008, Nature nanotechnology.

[139]  Keith A. Jenkins,et al.  Graphene radio frequency devices on flexible substrate , 2013 .

[140]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[141]  Phaedon Avouris,et al.  Graphene: electronic and photonic properties and devices. , 2010, Nano letters.

[142]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[143]  D. Jena,et al.  Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering , 2008, 0807.0183.

[144]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[145]  W. Fix,et al.  Fast polymer integrated circuits , 2002 .

[146]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[147]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[148]  Yeon-Gon Mo,et al.  High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper , 2007 .

[149]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[150]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[151]  Bruno Scrosati,et al.  An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. , 2014, Nano letters.

[152]  Jie Chen,et al.  Ballistic rectification in a Z-shaped graphene nanoribbon junction , 2008 .

[153]  A. Neto,et al.  Two-dimensional crystals-based heterostructures: materials with tailored properties , 2012 .

[154]  S. Roche,et al.  Charge Transport in Polycrystalline Graphene: Challenges and Opportunities , 2014, Advanced materials.

[155]  Robert H. Dennard,et al.  CMOS scaling for high performance and low power-the next ten years , 1995, Proc. IEEE.

[156]  Chris Hobbs,et al.  Benchmarking Transition Metal Dichalcogenide MOSFET in the Ultimate Physical Scaling Limit , 2014, IEEE Electron Device Letters.

[157]  A. Seabaugh,et al.  Tunnel Field-Effect Transistors: State-of-the-Art , 2014, IEEE Journal of the Electron Devices Society.

[158]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[159]  Stephanie Thalberg,et al.  Fundamentals Of Modern Vlsi Devices , 2016 .

[160]  Jon Cartwright Intel enters the third dimension , 2011 .

[161]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[162]  A. Ferrari,et al.  Production and processing of graphene and 2d crystals , 2012 .

[163]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[164]  M. Ostling,et al.  A graphene-based hot electron transistor. , 2012, Nano letters.

[165]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[166]  Giuseppe Iannaccone,et al.  Two-Dimensional Tunnel Transistors Based on ${\rm Bi}_{2}{\rm Se}_{3}$ Thin Film , 2014, IEEE Electron Device Letters.

[167]  K. Saraswat,et al.  Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and ≪60mV/dec subthreshold slope , 2008, 2008 IEEE International Electron Devices Meeting.

[168]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[169]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[170]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[171]  Peide D. Ye,et al.  Extraction of Channel Electron Effective Mobility in InGaAs/Al2O3 n-FinFETs , 2013 .

[172]  A. Ferrari,et al.  Inkjet-printed graphene electronics. , 2011, ACS nano.

[173]  E. Pop,et al.  Mobility and Saturation Velocity in Graphene on SiO2 , 2010, 1005.2711.

[174]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[175]  Aachen,et al.  A Graphene Field-Effect Device , 2007, IEEE Electron Device Letters.

[176]  J. Appenzeller,et al.  Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. , 2014, ACS nano.

[177]  Carl W. Magnuson,et al.  The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper , 2013, Science.

[178]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[179]  Mayumi Uno,et al.  Very High Mobility in Solution-Processed Organic Thin-Film Transistors of Highly Ordered [1]Benzothieno[3,2-b]benzothiophene Derivatives , 2009 .

[180]  K. Balasubramanian,et al.  A Selective Electrochemical Approach to Carbon Nanotube Field-Effect Transistors , 2004 .

[181]  J. Tait,et al.  Challenges and opportunities. , 1996, Journal of psychiatric and mental health nursing.

[182]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[183]  J. Rogers,et al.  Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon , 2008, IEEE Electron Device Letters.

[184]  K. Alam,et al.  Monolayer $\hbox{MoS}_{2}$ Transistors Beyond the Technology Road Map , 2012, IEEE Transactions on Electron Devices.

[185]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[186]  Siddharth Rajan,et al.  Large Area Single Crystal (0001) Oriented MoS2 Thin Films , 2013, 1302.3177.

[187]  A. Morpurgo,et al.  Contact resistance in graphene-based devices , 2009, 0901.0485.

[188]  Masakiyo Matsumura,et al.  High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method , 1993 .

[189]  E. Pop,et al.  Gigahertz integrated graphene ring oscillators. , 2013, ACS nano.

[190]  S. Trellenkamp,et al.  Inverters With Strained Si Nanowire Complementary Tunnel Field-Effect Transistors , 2013, IEEE Electron Device Letters.

[191]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[192]  N. Singh,et al.  CMOS-Compatible Vertical-Silicon-Nanowire Gate-All-Around p-Type Tunneling FETs With $\leq 50$-mV/decade Subthreshold Swing , 2011, IEEE Electron Device Letters.

[193]  Gong Gu,et al.  SymFET: A Proposed Symmetric Graphene Tunneling Field-Effect Transistor , 2012, IEEE Transactions on Electron Devices.

[194]  Xiaodong Li,et al.  Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles , 2013, 1301.7709.

[195]  Luigi Colombo,et al.  Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric , 2010 .

[196]  M. Ishihara,et al.  Low Temperature Graphene Synthesis from Poly(methyl methacrylate) Using Microwave Plasma Treatment , 2013 .

[197]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[198]  Nagashima,et al.  Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. , 1995, Physical review. B, Condensed matter.

[199]  Qin Zhang,et al.  Low-subthreshold-swing tunnel transistors , 2006, IEEE Electron Device Letters.

[200]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[201]  Chenming Hu,et al.  Sub 50-nm FinFET: PMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[202]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[203]  S. Haigh,et al.  Heterostructures produced from nanosheet-based inks. , 2014, Nano letters.