A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae.

[1]  H. Kosterlitz The fermentation of galactose and galactose-1-phosphate. , 1943, The Biochemical journal.

[2]  S. Spiegelman,et al.  On the cytoplasmic nature of "long-term adaptation" in yeast. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[3]  The particulate transmission of enzyme-forming capacity in yeast. , 1951, Cold Spring Harbor symposia on quantitative biology.

[4]  L. Leloir The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. , 1951, Archives of biochemistry and biophysics.

[5]  S. Spiegelman,et al.  A Single-Cell Analysis of the Transmission of Enzyme-Forming Capacity in Yeast. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[6]  B. Mundkur Long Term Adaptation to Galactose by Yeast. , 1952, Genetics.

[7]  S. Spiegelman,et al.  Substrate Stabilization of Enzyme-Forming Capacity During the Segregation of a Heterozygote. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Spiegelman,et al.  THE CONVERSION OF NEGATIVES TO POSITIVES IN “SLOW” ADAPTING POPULATIONS OF YEAST, , 1953, Journal of bacteriology.

[9]  H. C. Douglas,et al.  THE GENETIC CONTROL OF GALACTOSE UTILIZATION IN SACCHAROMYCES , 1954, Journal of bacteriology.

[10]  C. Roberts,et al.  Complementary Action of Melibiase and Galactozymase on Raffinose Fermentation , 1956, Nature.

[11]  H. Robichon-Szulmajster Induction of enzymes of the galactose pathway in mutants of Saccharomyces cerevisiae. , 1958 .

[12]  H. C. Douglas A mutation in saccharomyces that affects phosphoglucomutase activity and galactose utilization. , 1961, Biochimica et biophysica acta.

[13]  N. Nelson,et al.  GENE DOSAGE AND GALACTOSE UTILIZATION BY SACCHAROMYCES TETRAPLOIDS. , 1963, Genetics.

[14]  G. Pelroy,et al.  A gene controlling inducibility of the galactose pathway enzymes in Saccharomyces , 1963 .

[15]  D. Hawthorne,et al.  ENZYMATIC EXPRESSION AND GENETIC LINKAGE OF GENES CONTROLLING GALACTOSE UTILIZATION IN SACCHAROMYCES. , 1964, Genetics.

[16]  D. Hawthorne,et al.  Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. , 1966, Genetics.

[17]  V. P. Cirillo Galactose Transport in Saccharomyces cerevisiae I. Nonmetabolized Sugars as Substrates and Inducers of the Galactose Transport System , 1968, Journal of bacteriology.

[18]  H. C. Douglas,et al.  Genetic Control of Phosphoglucomutase Variants in Saccharomyces cerevisiae , 1969, Journal of bacteriology.

[19]  J. Bassel,et al.  Genetic Order of the Galactose Structural Genes in Saccharomyces cerevisiae , 1971, Journal of bacteriology.

[20]  D. Hawthorne,et al.  Uninducible Mutants in the gal i Locus of Saccharomyces cerevisiae , 1972, Journal of bacteriology.

[21]  B. G. Adams Induction of Galactokinase in Saccharomyces cerevisiae: Kinetics of Induction and Glucose Effects , 1972, Journal of bacteriology.

[22]  B. G. Adams,et al.  Population analysis of the deinduction kinetics of galactose long-term adaptation mutants of yeast. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. G. Adams,et al.  Dilution kinetic studies of yeast populations: in vivo aggregation of galactose utilizing enzymes and positive regulator molecules. , 1974, Genetics.

[24]  H. Halvorson,et al.  Studies on the positive regulatory gene, GAL4, in regulation of galactose catabolic enzymes in Saccharomyces cerevisiae , 1974, Molecular and General Genetics MGG.

[25]  H. Halvorson,et al.  Effect of GAL4 Gene Dosage on the Level of Galactose Catabolic Enzymes in Saccharomyces cerevisiae , 1976, Journal of bacteriology.

[26]  O. Kew,et al.  Genetic co-regulation of galactose and melibiose utilization in Saccharomyces , 1976, Journal of bacteriology.

[27]  H. Holzer Catabolite inactivation in yeast , 1976 .

[28]  P. S. Lazo,et al.  α‐Galactosidase from Saccharomyces carlsbergensis , 1977 .

[29]  P. Maitra,et al.  Genetics of yeast hexokinase. , 1977, Genetics.

[30]  H. Holzer,et al.  Catabolite inactivation of the galactose uptake system in yeast. , 1977, The Journal of biological chemistry.

[31]  B. G. Adams,et al.  Non- pleiotropic nature of the gal 3 mutation in yeast. , 1977, Biochemical and biophysical research communications.

[32]  M. Schell,et al.  Purification and properties of galactokinase from Saccharomyces cerevisiae. , 1977, The Journal of biological chemistry.

[33]  K. Matsumoto,et al.  Genetic control of galactokinase synthesis in Saccharomyces cerevisiae: evidence for constitutive expression of the positive regulatory gene gal4 , 1978, Journal of bacteriology.

[34]  P. S. Lazo,et al.  α-galactosidase (melibiase) from Saccharomyces carlsbergensis: Structural and kinetic properties , 1978 .

[35]  J. Hopper,et al.  Molecular expression and regulation of the galactose pathway genes in Saccharomyces cerevisiae. Distinct messenger RNAs specified by the Gali and Gal7 genes in the Gal7-Gal10-Gal1 cluster. , 1978, The Journal of biological chemistry.

[36]  J. Broach,et al.  Regulation of the galactose pathway in Saccharomyces cerevisiae: induction of uridyl transferase mRNA and dependency on GAL4 gene function. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Ronald W. Davis,et al.  Isolation of galactose-inducible DNA sequences from Saccharomyces cerevisiae by differential plaque filter hybridization , 1979, Cell.

[38]  R. Metzenberg,et al.  Implications of some genetic control mechanisms in Neurospora. , 1979, Microbiological reviews.

[39]  J. Hopper,et al.  Constitutive synthesis of the GAL4 protein, a galactose pathway regulator in saccharomyces cerevisiae , 1979, Cell.

[40]  J. Broach Galactose regulation in Saccharomyces cerevisiae. The enzymes encoded by the GAL7, 10, 1 cluster are co-ordinately controlled and separately translated. , 1979, Journal of molecular biology.

[41]  T. Segawa,et al.  The enzymes of the galactose cluster in Saccharomyces cerevisiae. Purification and characterization of galactose-1-phosphate uridylyltransferase. , 1979, The Journal of biological chemistry.

[42]  M. Schell,et al.  Cloning and expression of the yeast galactokinase gene in an Escherichia coli plasmid. , 1979, Gene.

[43]  J. Donelson,et al.  Expression of the yeast galactokinase gene in Escherichia coli. , 1979, Gene.

[44]  Y. Nogi,et al.  The enzymes of the galactose cluster in Saccharomyces cerevisiae. II. Purification and characterization of uridine diphosphoglucose 4-epimerase. , 1980, The Journal of biological chemistry.

[45]  K. Matsumoto,et al.  Function of positive regulatory gene gal4 in the synthesis of galactose pathway enzymes in Saccharomyces cerevisiae: evidence that the GAL81 region codes for part of the gal4 protein , 1980, Journal of bacteriology.

[46]  R. W. Davis,et al.  Deletion analysis of the Saccharomyces GAL gene cluster. Transcription from three promoters. , 1981, Journal of molecular biology.

[47]  R. W. Davis,et al.  The organization and transcription of the galactose gene cluster of Saccharomyces. , 1981, Journal of molecular biology.

[48]  K. Matsumoto,et al.  Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae , 1981, Molecular and cellular biology.

[49]  N. Marmiroli,et al.  IMP1/imp1: a gene involved in the nucleo-mitochondrial control of galactose fermentation in Saccharomyces cerevisiae. , 1981, Genetics.

[50]  D. Botstein,et al.  Mutants of yeast defective in sucrose utilization. , 1981, Genetics.

[51]  K. Matsumoto,et al.  Cyclic AMP may not be involved in catabolite repression in Saccharomyes cerevisiae: evidence from mutants capable of utilizing it as an adenine source , 1982, Journal of bacteriology.

[52]  J. Broach,et al.  The Molecular biology of the yeast Saccharomyces : metabolism and gene expression , 1982 .

[53]  T. Cooper Nitrogen Metabolism in Saccharomyces cerevisiae , 1982 .

[54]  A. Laughon,et al.  Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Johnston,et al.  Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[56]  L. Guarente,et al.  A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[57]  K. Matsumoto,et al.  Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae , 1983, Journal of bacteriology.

[58]  D. Hazuda,et al.  Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. , 1983, The Journal of biological chemistry.

[59]  L. Guarente Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. , 1983, Methods in enzymology.

[60]  Y. Nogi,et al.  Nucleotide sequence of the transcriptional initiation region of the yeast GAL7 gene. , 1983, Nucleic acids research.

[61]  K. Matsumoto,et al.  Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants unable to synthesize it , 1983, Journal of bacteriology.

[62]  J. Broach [21] Construction of high copy yeast vectors using 2-μm circle sequences , 1983 .

[63]  J. Broach,et al.  The yeast plasmid 2μ circle encodes components required for its high copy propagation , 1983, Cell.

[64]  P. Silver,et al.  Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[65]  L. Guarente Yeast promoters: Positive and negative elements , 1984, Cell.

[66]  J. Hopper,et al.  Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes , 1984, Molecular and cellular biology.

[67]  D. Lohr Organization of the GAL1-GAL10 intergenic control region chromatin. , 1984, Nucleic acids research.

[68]  R. Losson,et al.  Yeast regulatory gene PPR1. I. Nucleotide sequence, restriction map and codon usage. , 1984, Journal of molecular biology.

[69]  K. Struhl Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Schwartz,et al.  Positive control of transcription initiation in bacteria. , 1984, Annual review of genetics.

[71]  K. Matsumoto,et al.  [Regulatory circuits for gene expression: the metabolism of galactose and phosphate in Saccharomyces cerevisiae]. , 1984, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[72]  A. Laughon,et al.  Primary structure of the Saccharomyces cerevisiae GAL4 gene , 1984, Molecular and cellular biology.

[73]  M. Carlson,et al.  Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. , 1984, Genetics.

[74]  P. Okkema,et al.  Expression of the Saccharomyces cerevisiae GAL7 gene on autonomous plasmids , 1984, Molecular and cellular biology.

[75]  M. Johnston,et al.  Molecular cloning of the GAL80 gene from Saccharomyces cerevisiae and characterization of a gal80 deletion. , 1984, Gene.

[76]  D Botstein,et al.  A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast. , 1984, Genetics.

[77]  J. Hopper,et al.  Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae , 1984, Molecular and cellular biology.

[78]  S. Henry,et al.  The genetic regulation and coordination of biosynthetic pathways in yeast: amino acid and phospholipid synthesis. , 1984, Annual review of genetics.

[79]  J. Donelson,et al.  Sequence of the Saccharomyces GAL region and its transcription in vivo , 1984, Journal of bacteriology.

[80]  R. Brent,et al.  A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene , 1984, Nature.

[81]  M. Ptashne,et al.  Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG , 1984, Molecular and cellular biology.

[82]  K. Entian,et al.  Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression , 1984, Journal of bacteriology.

[83]  R. W. Davis,et al.  Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae , 1984, Molecular and cellular biology.

[84]  A. Hinnebusch Evidence for translational regulation of the activator of general amino acid control in yeast. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[85]  I. Herskowitz,et al.  Directionality and regulation of cassette substitution in yeast. , 1984, Cold Spring Harbor symposia on quantitative biology.

[86]  M. Ptashne,et al.  Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae , 1984, Molecular and cellular biology.

[87]  C. Yanofsky,et al.  Repression is relieved before attenuation in the trp operon of Escherichia coli as tryptophan starvation becomes increasingly severe , 1984, Journal of bacteriology.

[88]  A. Laughon,et al.  Identification of two proteins encoded by the Saccharomyces cerevisiae GAL4 gene , 1984, Molecular and cellular biology.

[89]  Y. Nogi,et al.  Nucleotide sequence of the yeast regulatory gene GAL80. , 1984, Nucleic acids research.

[90]  K. Entian,et al.  Cloning of hexokinase structural genes from Saccharomyces cerevisiae mutants with regulatory mutations responsible for glucose repression , 1985, Molecular and cellular biology.

[91]  J. Proffitt DNase I-hypersensitive sites in the galactose gene cluster of Saccharomyces cerevisiae , 1985, Molecular and cellular biology.

[92]  D. Lohr,et al.  The relationship of regulatory proteins and DNase I hypersensitive sites in the yeast GAL1-10 genes. , 1985, Nucleic acids research.

[93]  I. Herskowitz,et al.  A repressor (MATα2 product) and its operator control expression of a set of cell type specific genes in yeast , 1985, Cell.

[94]  R. Brent,et al.  A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor , 1985, Cell.

[95]  R. Kornberg,et al.  Specific protein binding to far upstream activating sequences in polymerase II promoters. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[96]  A. Hinnebusch A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae , 1985, Molecular and cellular biology.

[97]  K. Struhl,et al.  GCN4 protein, synthesize in vitro, binds HIS3 regulatory sequences: Implications for general control of amino acid biosynthetic genes in yeast , 1985, Cell.

[98]  R. Kornberg,et al.  A region flanking the GAL7 gene and a binding site for GAL4 protein as upstream activating sequences in yeast. , 1985, Journal of molecular biology.

[99]  Y. Nogi,et al.  Primary structure of the Saccharomyces cerevisiae GAL7 gene , 1985, Yeast.

[100]  G. Fink,et al.  Ty elements transpose through an RNA intermediate , 1985, Cell.

[101]  M. Case,et al.  Gene organization and regulation in the qa (quinic acid) gene cluster of Neurospora crassa. , 1985, Microbiological reviews.

[102]  K. Struhl Negative control at a distance mediates catabolite repression in yeast , 1985, Nature.

[103]  T. Fukasawa,et al.  Controlled transcription of the yeast regulatory gene GAL80. , 1985, Gene.

[104]  J. Rine,et al.  Regulated expression of endonuclease EcoRI in Saccharomyces cerevisiae: nuclear entry and biological consequences. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[105]  A Klug,et al.  Repetitive zinc‐binding domains in the protein transcription factor IIIA from Xenopus oocytes. , 1985, The EMBO journal.

[106]  P. Liljeström The nucleotide sequence of the yeast MEL1 gene. , 1985, Nucleic acids research.

[107]  M. Ptashne,et al.  Specific DNA binding of GAL4, a positive regulatory protein of yeast , 1985, Cell.

[108]  K. Yamamoto,et al.  Steroid receptor regulated transcription of specific genes and gene networks. , 1985, Annual review of genetics.

[109]  K. Struhl,et al.  Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of Yeast , 1986, Cell.

[110]  C. Debouck,et al.  Functional domains of the yeast regulatory protein GAL4. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[111]  H. Echols,et al.  Multiple DNA-protein interactions governing high-precision DNA transactions. , 1986, Science.

[112]  R. Schekman,et al.  GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae , 1986, Journal of bacteriology.

[113]  M. Ptashne,et al.  Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. , 1986, Science.

[114]  S. Johnston,et al.  Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae GAL4 gene. , 1986, Nucleic acids research.

[115]  M Ptashne,et al.  DNA binding is not sufficient for nuclear localization of regulatory proteins in Saccharomyces cerevisiae , 1986, Molecular and cellular biology.

[116]  E. Dubois,et al.  Nucleotide sequence of the ARGRII regulatory gene and amino acid sequence homologies between ARGRII PPRI and GAL4 regulatory proteins. , 1986, European journal of biochemistry.

[117]  R. Skvirsky,et al.  New positive and negative regulators for general control of amino acid biosynthesis in Saccharomyces cerevisiae , 1986, Molecular and cellular biology.

[118]  Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. , 1986, Molecular and cellular biology.

[119]  M. Carlson,et al.  A yeast gene that is essential for release from glucose repression encodes a protein kinase. , 1986, Science.

[120]  Y. Nogi GAL3 gene product is required for maintenance of the induced state of the GAL cluster genes in Saccharomyces cerevisiae , 1986, Journal of bacteriology.

[121]  C. Denis,et al.  Constitutive RNA synthesis for the yeast activator ADR1 and identification of the ADR1-5c mutation: implications in posttranslational control of ADR1 , 1986, Molecular and cellular biology.

[122]  F. Hilger,et al.  Isolation, physical characterization and expression analysis of the Saccharomyces cerevisiae positive regulatory gene PHO4. , 1986, Nucleic acids research.

[123]  Mark Ptashne,et al.  Gene regulation by proteins acting nearby and at a distance , 1986, Nature.

[124]  A. Hinnebusch,et al.  Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae , 1986, Molecular and cellular biology.

[125]  M. Carlson,et al.  Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast. , 1986, Genetics.

[126]  J. Hopper,et al.  Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/melibiose regulon of Saccharomyces cerevisiae. , 1986, Genetics.

[127]  H. Blumberg,et al.  Sequence homology of the yeast regulatory protein ADR1 with Xenopus transcription factor TFIIIA , 1986, Nature.

[128]  M. Schlesinger,et al.  Regulated expression of Sindbis and vesicular stomatitis virus glycoproteins in Saccharomyces cerevisiae. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[129]  R. Kornberg,et al.  A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription. , 1986, The EMBO journal.

[130]  Y. Nogi,et al.  Duplicate upstream activating sequences in the promoter region of the Saccharomyces cerevisiae GAL7 gene , 1986, Molecular and cellular biology.

[131]  C. Sengstag,et al.  The sequence of the Saccharomyces cerevisiae gene PHO2 codes for a regulatory protein with unusual aminoacid composition , 1987, Nucleic Acids Res..

[132]  K. Yamamoto,et al.  Glucocorticoid receptor mutants that define a small region sufficient for enhancer activation. , 1987, Science.

[133]  K. Yamamoto,et al.  Functional dissection of the hormone and DNA binding activities of the glucocorticoid receptor. , 1987, EMBO Journal.

[134]  N. Giles,et al.  Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain , 1987, Molecular and cellular biology.

[135]  D. Chasman,et al.  Interaction of GAL4 and GAL80 gene regulatory proteins in vitro , 1987, Molecular and cellular biology.

[136]  Kevin Struhl,et al.  Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast , 1987, Cell.

[137]  M. J. Charron,et al.  The constitutive, glucose-repression-insensitive mutation of the yeast MAL4 locus is an alteration of the MAL43 gene. , 1987, Genetics.

[138]  L. Guarente,et al.  Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene , 1987, Cell.

[139]  Alan Bender,et al.  MATα1 protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes , 1987, Cell.

[140]  M. Johnston Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL4 protein , 1987, Nature.

[141]  The determination of mother cell‐specific mating type of switching in yeast by a specific regulator of HO transcription , 1987 .

[142]  Mark Ptashne,et al.  Mutants of GAL4 protein altered in an activation function , 1987, Cell.

[143]  Jun Ma,et al.  Deletion analysis of GAL4 defines two transcriptional activating segments , 1987, Cell.

[144]  S. Johnston,et al.  Interaction of positive and negative regulatory proteins in the galactose regulon of yeast , 1987, Cell.

[145]  R. Evans,et al.  Colocalization of DNA-binding and transcriptional activation functions in the human glucocorticoid receptor , 1987, Cell.

[146]  L. Wray,et al.  Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: structural and functional relationships to GAL4 of Saccharomyces cerevisiae , 1987, Molecular and cellular biology.

[147]  K. Myambo,et al.  The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae , 1987, Molecular and cellular biology.

[148]  Jun Ma,et al.  A new class of yeast transcriptional activators , 1987, Cell.

[149]  R. Gunsalus,et al.  Regulation of the aroH operon of Escherichia coli by the tryptophan repressor , 1987, Journal of bacteriology.

[150]  K. Yamamoto,et al.  Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement , 1987, Nature.

[151]  M. Johnston,et al.  Mutations that inactivate a yeast transcriptional regulatory protein cluster in an evolutionarily conserved DNA binding domain. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[152]  S. Selleck,et al.  Photofootprinting in vivo detects transcription-dependent changes in yeast TATA boxes , 1987, Nature.

[153]  M. Ptashne,et al.  The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80 , 1987, Cell.

[154]  S. Johnston,et al.  GAL4 of Saccharomyces cerevisiae activates the lactose-galactose regulon of Kluyveromyces lactis and creates a new phenotype: glucose repression of the regulon , 1987, Molecular and cellular biology.

[155]  K. Zhou,et al.  Structure of yeast regulatory gene LEU3 and evidence that LEU3 itself is under general amino acid control , 1987, Nucleic Acids Res..

[156]  S. Selleck,et al.  In vivo DNA-binding properties of a yeast transcription activator protein , 1987, Molecular and cellular biology.