UVolution: Compared photochemistry of prebiotic organic compounds in low Earth orbit and in the laboratory

Abstract Solar UV radiation is a major source of energy for chemical evolution of organic materials in the Solar System. Therefore studies on the photostability of organic compounds in extraterrestrial environments are of prime importance for the understanding of the extraterrestrial origin of organic materials on Earth. A series of organic samples have been photolysed in Earth orbit during the ESA BIOPAN 6 mission (14–26/09/2007). Their photochemical lifetime has been measured and compared to results recorded in the laboratory using a lamp that simulates the solar radiation in the VUV domain. The half-lives at a distance of 1 AU from the Sun have been measured for glycine, xanthine, hypoxanthine, adenine, guanine, urea, carbon suboxide polymer ((C 3 O 2 ) n ) and HCN polymer. They range from a few days to a lower limit of a few tens of days for the most photoresistant (e.g. adenine, guanine, hypoxanthine). Lifetimes measured in terrestrial orbit are very different from those derived with laboratory experiments. These measurements confirm that it is difficult to simulate the solar spectrum below 200 nm in the laboratory. Results are discussed and highlight the necessity to conduct experiments in orbit, and for longer duration. It also appears that the laboratory measurements made in VUV must be extrapolated very cautiously to the different environments they are supposed to simulate.

[1]  POLYOXYMETHYLENE AS PARENT MOLECULE FOR THE FORMALDEHYDE EXTENDED SOURCE IN COMET HALLEY , 2001 .

[2]  H. Baumgärtel,et al.  VUV photochemistry of small biomolecules , 2006 .

[3]  Rui Fausto,et al.  Vibrational spectra of acid and alkaline glycine salts , 1998 .

[4]  N. Fray,et al.  Distributed Sources in Comets , 2008 .

[5]  J. Crovisier,et al.  The composition of cometary volatiles , 2004 .

[6]  Cyril Szopa,et al.  UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carboxylic acids exposed to mars surface UV radiation conditions. , 2010, Astrobiology.

[7]  F. R. Krueger,et al.  Composition of comet Halley dust particles from Giotto observations , 1986 .

[8]  A. Brack,et al.  Exposure of amino acids and derivatives in the Earth orbit , 2002 .

[9]  W. G. Fateley,et al.  The infrared spectrum of carbon suboxide , 1964 .

[10]  Scott A. Sandford,et al.  Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol , 1995 .

[11]  C. Alsenoy,et al.  Solids modeled by ab-initio crystal field methods. Effects of intermolecular interactions on the vibrational spectrum of urea , 1999 .

[12]  F. Duvernay,et al.  Tentative identification of urea and formamide in ISO-SWS infrared spectra of interstellar ices , 2004 .

[13]  H. Boehm.,et al.  Über die „rote Kohle”︁ von Klemenc. II , 1955 .

[14]  W. R. Salaneck,et al.  X-ray photoelectron and infrared spectroscopy of glycine adsorbed upon copper , 1990 .

[15]  Y. Iitaka The crystal structure of β-glycine , 1960 .

[16]  M. Tsuboi,et al.  Infrared and Raman spectra of adenine and its 15N and 13C substitution products , 1985 .

[17]  R. Navarro,et al.  Theoretical calculations and vibrational study of hypoxanthine in aqueous solution , 2005 .

[18]  Bernard H. Foing,et al.  The ORGANICS experiment on BIOPAN V: UV and space exposure of aromatic compounds , 2007 .

[19]  M. Moore,et al.  Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide , 2004 .

[20]  D. Young,et al.  The Structure and Properties of Carbon Suboxide Polymer , 1963 .

[21]  A. Brack,et al.  Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues , 2002 .

[22]  R. Corey,et al.  The Crystal Structure of Glycine , 1939 .

[23]  D. Despois,et al.  Comets and astrobiology , 2022 .

[24]  K. Tsukamoto,et al.  Transformation of a-glycine to ?-glycine , 1992 .

[25]  Andrew Steele,et al.  Organics Captured from Comet Wild 2 by the Stardust Spacecraft , 2006 .

[26]  A. R. Blake,et al.  Carbon suboxide polymers. Part 1.—Structure of thermal polymers , 1964 .

[27]  S. Gunasekaran,et al.  Vibrational spectral investigation on xanthine and its derivatives--theophylline, caffeine and theobromine. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[28]  J. Delabar,et al.  Infrared and Raman spectroscopic study of 15N and D-substituted guanines , 1978 .

[29]  Frances Westall,et al.  Heterogeneous solid/gas chemistry of organic compounds related to comets, meteorites, Titan, and Mars: Laboratory and in lower Earth orbit experiments , 2008 .

[30]  Pascale Ehrenfreund,et al.  Indigenous amino acids in primitive CR meteorites , 2007 .

[31]  P. Ehrenfreund,et al.  Amino acid composition, petrology, geochemistry, 14C terrestrial age and oxygen isotopes of the Shişr 033 CR chondrite , 2007 .

[32]  Alan W. Schwartz,et al.  Search for purines and pyrimidines in the Murchison meteorite , 1977 .

[33]  Paul F. McMillan,et al.  New experimental constraints on the composition and structure of tholins , 2008 .

[34]  D. Lis,et al.  New molecules found in comet C/1995 O1 (Hale-Bopp) Investigating the link between cometary and interstellar material , 2000 .

[35]  A. Brack,et al.  Delivery of extraterrestrial amino acids to the primitive Earth. Exposure experiments in Earth orbit. , 1998, Uchu Seibutsu Kagaku.

[36]  Bernard H. Foing,et al.  Amino acid photostability on the Martian surface , 2005 .

[37]  E. Bergin,et al.  Spectroscopic Observations of Comet C/1996 B2 (Hyakutake) with the Caltech Submillimeter Observatory , 1997 .

[38]  M. Moore,et al.  Carbon suboxide in astrophysical ice analogs , 2001 .

[39]  A. Snow,et al.  Poly(carbon suboxide). Characterization, Polymerization, and Radical Structure , 1978 .

[40]  Scott A. Sandford,et al.  The Photostability of Amino Acids in Space , 2001 .

[41]  Alan W. Schwartz,et al.  Extraterrestrial nucleobases in the Murchison meteorite , 2008 .

[42]  Hervé Cottin Chimie organique de l'environnement cométaire : étude expérimentale de la contribution de la composante organique réfractaire à la phase gazeuse , 1999 .

[43]  Ernest Hilsenrath,et al.  Solar irradiance reference spectra for two solar active levels , 2004 .

[44]  J. Koenig,et al.  F.t.-i.r. and laser-Raman spectra of adenine and adenosine☆ , 1984 .

[45]  S. Prasad,et al.  UV radiation field inside dense clouds: its possible existence and chemical implications , 1983 .

[46]  P. Ehrenfreund,et al.  The Astrobiology of Nucleobases , 2003 .

[47]  Christopher P. McKay,et al.  Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze , 2004 .

[48]  P. G. Mezger,et al.  Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. , 1983 .

[49]  J. Bada,et al.  Extraterrestrial Organic Compounds in Meteorites , 2002 .

[50]  René Demets,et al.  Past, present and future of Biopan , 2004 .

[51]  J. Cronin Origin of organic compounds in carbonaceous chondrites. , 1989, Advances in Space Research.

[52]  E. Anders,et al.  Purines and triazines in the Murchison meteorite , 1975 .

[53]  J. Doussin,et al.  An experimental study of the photodegradation of polyoxymethylene at 122, 147 and 193 nm , 2000 .

[54]  Zhimin Liu,et al.  Crystallization of metastable β glycine from gas phase via the sublimation of α or γ form in vacuum , 2008 .

[55]  J. M. Greenberg,et al.  Photochemical reactions in interstellar grains photolysis of co, NH3, and H2O , 2005, Origins of life and evolution of the biosphere.

[56]  P. Ehrenfreund,et al.  Ultraviolet processing of interstellar ice analogs. I. Pure ices. , 1996 .

[57]  A. Brack,et al.  The Perseus Exobiology Mission on MIR Behaviour of Amino Acids and Peptides in Earth Orbit , 2002, Origins of life and evolution of the biosphere.

[58]  J. Schmedt auf der Günne,et al.  The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study. , 2005, Chemistry.

[59]  Hideo Okabe,et al.  Photochemistry of small molecules , 1978 .

[60]  J. Elsila,et al.  Cometary glycine detected in samples returned by Stardust , 2009 .

[61]  Cyril Szopa,et al.  Production of Hexamethylenetetramine in Photolyzed and Irradiated Interstellar Cometary Ice Analogs , 2001 .

[62]  M. Nishii,et al.  Radiation-induced chemical reactions of carbon monoxide and hydrogen mixture—IV. On the water produced by the addition of small amounts of ammonia , 1986 .

[63]  M. Fomenkova On the Organic Refractory Component of Cometary Dust , 1999 .

[64]  Y. Langevin,et al.  Composition of comet Halley dust particles from Vega observations , 1986 .

[65]  R. Moreno,et al.  Spectroscopic Monitoring of Comet C/1996 B2 (Hyakutake) with the JCMT and IRAM Radio Telescopes , 1999 .

[66]  Ryoichi Hayatsu,et al.  Orgueil Meteorite: Organic Nitrogen Contents , 1964, Science.

[67]  F. R. Krueger,et al.  The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1 , 1987, Nature.