Parallel Patterns for Agent-based Evolutionary Computing

Computing applications such as metaheuristics-based optimization can greatly benefit from multi-core architectures available on modern supercomputers. In this paper, we describe an easy and efficient way to implement certain population-based algorithms (in the discussed case, multi-agent computing system) on such runtime environments. Our solution is based on an Erlang software library which implements dedicated parallel patterns. We provide technological details on our approach and discuss experimental results.

[1]  Marek Kisiel-Dorohinicki,et al.  Computing agents for decision support systems , 2014, Future Gener. Comput. Syst..

[2]  Carlos Cotta,et al.  Finding low autocorrelation binary sequences with memetic algorithms , 2009, Appl. Soft Comput..

[3]  Agostino Poggi,et al.  Jade - a fipa-compliant agent framework , 1999 .

[4]  Peter Kilpatrick,et al.  Cost-Directed Refactoring for Parallel Erlang Programs , 2013, International Journal of Parallel Programming.

[5]  Carlos Cotta,et al.  Asymptotic guarantee of success for multi-agent memetic systems , 2013 .

[6]  Robert Schaefer,et al.  Multi-agent computing system in a heterogeneous network , 2002, Proceedings. International Conference on Parallel Computing in Electrical Engineering.

[7]  Zoltán Horváth,et al.  Discovering parallel pattern candidates in Erlang , 2014, Erlang Workshop.

[8]  Peter Kilpatrick,et al.  The ParaPhrase Project: Parallel Patterns for Adaptive Heterogeneous Multicore Systems , 2011, FMCO.

[9]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[10]  Michael Pidd,et al.  Three phase simulation in Java , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[11]  Winfried Lamersdorf,et al.  Jadex: Implementing a BDI-Infrastructure for JADE Agents , 2003 .

[12]  Marek Kisiel-Dorohinicki,et al.  Evolutionary multi-agent systems , 2015, The Knowledge Engineering Review.

[13]  Tapabrata Ray,et al.  Agent-Based Evolutionary Search , 2010 .

[14]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[15]  Sean Luke,et al.  MASON: A Multiagent Simulation Environment , 2005, Simul..

[16]  Marek Kisiel-Dorohinicki,et al.  Generation-free Agent-based Evolutionary Computing , 2014, ICCS.

[17]  Jacques Ferber,et al.  The MADKIT Agent Platform Architecture , 2000, Agents Workshop on Infrastructure for Multi-Agent Systems.

[18]  Kai Jander,et al.  The Jadex Project: Programming Model , 2013, Multiagent Systems and Applications - Volume 1.

[19]  Michael J. North,et al.  Complex adaptive systems modeling with Repast Simphony , 2013, Complex Adapt. Syst. Model..

[20]  Yasushi Kambayashi,et al.  Multi-Agent Applications with Evolutionary Computation and Biologically Inspired Technologies: Intelligent Techniques for Ubiquity and Optimization , 2010 .

[21]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[22]  Zoltán Horváth,et al.  Refactorings to Enable Parallelization , 2014, Trends in Functional Programming.