Encapsulating Knowledge: The Direct Reading Spectrometer

The direct reading emission spectrometer was developed during the1940s. By substituting photo-multiplier tubes and electronics forphotographic film spectrograms, the interpretation of special lineswith a densitometer was avoided. Instead, the instrument providedthe desired information concerning percentage concentration ofelements of interest directly on a dial. Such instruments `de-skill' the job of making such measurements. They do this by encapsulatingin the instrument the skills previously employed by the analyst,by `skilling' the instrument. This paper presents a history of thedevelopment of the Dow Chemical/Baird Associates direct reader. Thishistory is used to argue for a materialist conception of knowledge.The instrument is a material form of knowledge, knowledge of aspectsof spectroscopy, analytical spectrochemistry, electronics, instrumentdesign and construction, and metal production industry economics.

[1]  J. Strong Effect of Evaporated Films on Energy Distribution in Grating Spectra , 1936 .

[2]  F. Twyman The spectrochemical analysis of metals and alloys , 1941 .

[3]  Carl Mitcham,et al.  Thinking through Technology , 1994 .

[4]  John Strong,et al.  The Evaporation Process and its Application to the Aluminizing of Large Telescope Mirrors , 1936 .

[5]  P. Coleman,et al.  Photoelectric Detection and Intensity Measurement in Raman Spectra , 1942 .

[6]  H. Dreyfus Mind Over Machine , 1986 .

[7]  Davis Baird,et al.  Analytical chemistry and the ‘big’ scientific instrumentation revolution , 1993 .

[8]  Kirchhoff IX. Chemical analysis by spectrum-observations , 1860 .

[9]  D. C. Hotheesall The investigation of domain walls in thin sections of iron by the electron interference method , 1969 .

[10]  I. Hacking,et al.  Representing and Intervening. , 1986 .

[11]  G. Dieke,et al.  Direct Intensity Measurements of Spectrum Lines with Photo-Multiplier Tubes* , 1945 .

[12]  M. Hasler,et al.  The quantometer, a direct reading instrument for spectrochemical analysis. , 1948, Journal of the Optical Society of America.

[13]  Allan Franklin,et al.  The Creation of Scientific Effects: Heinrich Hertz and Electric Waves , 1994 .

[14]  Derek J. de Solla Price,et al.  Scientists and Their Tools , 1982 .

[15]  L. Taylor,et al.  The Neglect of Experiment , 1986 .

[16]  Walter G. Vincenti,et al.  What Engineers Know and How They Know It: Analytical Studies from Aeronautical History , 1990 .

[17]  Peter Achinstein,et al.  Observation, experiment, and hypothesis in modern physical science , 1986 .

[18]  D. Haraway A manifesto for Cyborgs: Science, technology, and socialist feminism in the 1980s , 1987 .

[19]  Alfred Nordmann,et al.  Facts-Well-Put , 1994, The British Journal for the Philosophy of Science.

[20]  A. Pickering The mangle of practice : time, agency, and science , 1997 .

[21]  O. S. Duffendack,et al.  An Investigation of the Properties and Applications of the Geiger-Müller Photoelectron Counter* , 1942 .

[22]  Derek J. deSolla Price,et al.  Notes Towards a Philosophy of the Science/Technology Interaction , 1984 .

[23]  H. Rowland,et al.  On concave gratings for optical purposes , 1883, American Journal of Science.

[24]  J. L. Saunderson,et al.  A photoelectric instrument for direct spectrochemical analysis. , 1945, Journal of the Optical Society of America.

[25]  Henry A. Rowland Preliminary Notice of the Results Accomplished in the Manufacture and Theory of Gratings for Optical Purposes , 1882 .

[26]  Trevor Pinch,et al.  The Uses of Experiment , 1992 .

[27]  V. Zworykin,et al.  The Electrostatic Electron Multiplier , 1939, Proceedings of the IRE.

[28]  M. Polanyi,et al.  Personal Knowledge: Towards a post-critical philosophy , 1959 .

[29]  W. Gerlach,et al.  Foundations and Methods of Chemical Analysis by the Emission Spectrum , 1933, Nature.

[30]  Eugene S. Ferguson,et al.  Edison’s Electric Light: Biography of an Invention by Robert Friedel, et al (review) , 1988, Technology and Culture.

[31]  J. Sterner,et al.  Direct-reading spectrometer for ferrous analysis. , 1947, Journal of the Optical Society of America.

[32]  George Basalla,et al.  Instruments and the Imagination , 1995 .

[33]  R. W. Wood,et al.  Anomalous Diffraction Gratings , 1935 .

[34]  Imre Lakatos,et al.  The Methodology of Scientific Research Programmes , 1978 .

[35]  Galen Wood Ewing,et al.  A History of analytical chemistry , 1977 .

[36]  C. Peirce,et al.  Philosophical Writings of Peirce , 1955 .

[37]  M. Hasler,et al.  Direct Reading Instrument for Spectrochemical Analysis , 1944 .

[38]  M. Suárez,et al.  The Values of Precision , 2020 .

[39]  B. Latour Science in Action , 1987 .

[40]  R. Muller Instrumental Methods of Chemical Analysis , 1941 .

[41]  T. Kuhn The Structure of Scientific Revolutions. , 1964 .

[42]  Thomas Faust,et al.  Scientific Instruments, Scientific Progress and the Cyclotron1 , 1990, The British Journal for the Philosophy of Science.

[43]  R. W. Wood,et al.  XXVII. Diffraction gratings with controlled groove form and abnormal distribution of intensity , 1912 .

[44]  I. Lakatos,et al.  Criticism and the Growth of Knowledge: Falsification and the Methodology of Scientific Research Programmes , 1970 .

[45]  David Gooding,et al.  Experiment and the Making of Meaning , 1990 .

[46]  I. Hacking,et al.  How Experiments End , 1989 .

[47]  R. Wood Improved Diffraction Gratings and Replicas , 1944 .

[48]  Ralph Muller,et al.  American Apparatus, Instruments, and Instrumentation , 1940 .