Improved hole injection for blue phosphorescent organic light-emitting diodes using solution deposited tin oxide nano-particles decorated ITO anodes

[1]  M. E. Bouanani,et al.  Effects of argon sputtering and UV-ozone radiation on the physico-chemical surface properties of ITO , 2018 .

[2]  Aram Amassian,et al.  Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[3]  In‐Hwan Lee,et al.  Low-Temperature Solution-Processed SnO2 Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells. , 2017, ACS applied materials & interfaces.

[4]  B. Mehta,et al.  Structural and photoluminescence properties of tin oxide and tin oxide: C core–shell and alloy nanoparticles synthesised using gas phase technique , 2016 .

[5]  Young Kwan Kim,et al.  Study of p -/ n -Type Co-Host System in Single Emissive White Phosphorescent Organic Light-Emitting Devices Using Glass and Flexible Substrate , 2016 .

[6]  T. Riedl,et al.  Tin Oxide (SnOx) as Universal “Light‐Soaking” Free Electron Extraction Material for Organic Solar Cells , 2015 .

[7]  L. Liao,et al.  Origin of Enhanced Hole Injection in Organic Light-Emitting Diodes with an Electron-Acceptor Doping Layer: p-Type Doping or Interfacial Diffusion? , 2015, ACS applied materials & interfaces.

[8]  Tien‐Lung Chiu,et al.  Spectral observations of hole injection with transition metal oxides for an efficient organic light-emitting diode , 2015 .

[9]  A. Choudhury,et al.  Room temperature ferromagnetism in SnO2 nanoparticles: an experimental and density functional study , 2014 .

[10]  Jun Yeob Lee Mixed-host-emitting layer for high-efficiency organic light-emitting diodes , 2014 .

[11]  B. Mazhari,et al.  Traps signature in steady state current-voltage characteristics of organic diode , 2014 .

[12]  Kayahan Saritas,et al.  Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride , 2014 .

[13]  YuHyeonghwa,et al.  Nanoreactors or nanoscale stablizers: routes for solution processed indium tin oxide nanoparticles by reverse micelle deposition1 , 2014 .

[14]  S. Kim,et al.  Homo-Junction pn Diode Using p-Type SnO and n-Type SnO2 Thin Films , 2014 .

[15]  Yikai Su,et al.  High efficiency green phosphorescent organic light-emitting diodes with a low roll-off at high brightness , 2013 .

[16]  B. Mazhari,et al.  Estimation of built-in voltage from steady-state current–voltage characteristics of organic diodes , 2013 .

[17]  Thomas Riedl,et al.  Solution processed metal-oxides for organic electronic devices , 2013 .

[18]  Husam N. Alshareef,et al.  Record mobility in transparent p-type tin monoxide films and devices by phase engineering. , 2013, ACS nano.

[19]  Changhee Lee,et al.  Improved efficiency of inverted organic light-emitting diodes using tin dioxide nanoparticles as an electron injection layer. , 2013, ACS applied materials & interfaces.

[20]  J. Niemantsverdriet,et al.  X-ray photoelectron spectroscopy study on the chemistry involved in tin oxide film growth during chemical vapor deposition processes , 2013 .

[21]  T. Riedl,et al.  Room-temperature solution processed SnOx as an electron extraction layer for inverted organic solar cells with superior thermal stability , 2012 .

[22]  Taner Aytun,et al.  Solution processed LiF anode modification for polymer solar cells , 2012 .

[23]  Taner Aytun,et al.  Solution-processed LiF for work function tuning in electrode bilayers. , 2012, Nano letters.

[24]  Y. Tao,et al.  Approaching charge balance in organic light-emitting diodes by tuning charge injection barriers with mixed monolayers. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[25]  Changhee Lee,et al.  Device characteristics of blue phosphorescent organic light-emitting diodes depending on the electron transport materials , 2011 .

[26]  Shun‐Wei Liu,et al.  High-efficiency blue organic light-emitting diodes using a 3,5-di(9H-carbazol-9-yl)tetraphenylsilane host via a solution-process , 2010 .

[27]  K. Morokuma,et al.  An experimental and density functional study of the Sb-C bond activation and organo-Rh bond formation from the spontaneous decay of [RhCl3(SbPh3)3] , 2009 .

[28]  N. Armstrong,et al.  Oxide contacts in organic photovoltaics: characterization and control of near-surface composition in indium-tin oxide (ITO) electrodes. , 2009, Accounts of chemical research.

[29]  D. Wen,et al.  Experimental Investigation of the Oxidation of Tin Nanoparticles , 2009 .

[30]  F. So,et al.  30.1: Invited Paper: Charge Balance in Blue Phosphorescent Organic Light Emitting Diodes , 2009 .

[31]  S. Y. Kim,et al.  Correlation Between Charge Injection and Charge Balance in Organic Light Emitting Diodes Using LiF and IrOx Interlayers , 2009 .

[32]  Hideo Hosono,et al.  p-channel thin-film transistor using p-type oxide semiconductor, SnO , 2008 .

[33]  Chunyang Ma,et al.  Synthesis and characterization of the composite of SnO2 nanoparticles coated on SiO2 microspheres , 2008 .

[34]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[35]  N. Koch,et al.  Tuning the hole injection barrier height at organic/metal interfaces with (sub-) monolayers of electron acceptor molecules , 2005 .

[36]  J. M. Baik,et al.  Rhodium-oxide-coated indium tin oxide for enhancement of hole injection in organic light emitting diodes , 2005 .

[37]  Youngmo Koo,et al.  Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode , 2005 .

[38]  S. Y. Kim,et al.  Enhancement of hole injection using iridium-oxide-coated indium tin oxide anodes in organic light-emitting diodes , 2005 .

[39]  Chihaya Adachi,et al.  100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films , 2005 .

[40]  Jordi Arbiol,et al.  Synthesis of Tin Oxide Nanostructures with Controlled Particle Size Using Mesoporous Frameworks , 2004 .

[41]  H. Chung,et al.  Improved blue light-emitting polymeric device by the tuning of drift mobility and charge balance , 2004 .

[42]  M. Batzill,et al.  Surface oxygen chemistry of a gas-sensing material: SnO2(101) , 2004 .

[43]  U. Diebold,et al.  Surface oxygen chemistry of a gas-sensing material: SnO2(101) , 2004 .

[44]  Fumio Sato,et al.  Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices , 2003 .

[45]  Stephen R. Forrest,et al.  Blue organic electrophosphorescence using exothermic host–guest energy transfer , 2003 .

[46]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[47]  Shui-Tong Lee,et al.  Transient electroluminescence measurements on electron-mobility of N-arylbenzimidazoles , 2001 .

[48]  D. Milliron,et al.  Surface oxidation activates indium tin oxide for hole injection , 2000 .

[49]  Franco Cacialli,et al.  Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance , 1998 .

[50]  T. Miyata,et al.  Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering , 1998 .

[51]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[52]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[53]  Shizuo Tokito,et al.  Metal oxides as a hole-injecting layer for an organic electroluminescent device , 1996 .

[54]  J. Pálinkás,et al.  Electronic structure of tin oxides: High‐resolution study of XPS and Auger spectra , 1995 .

[55]  J. A. Varella,et al.  Preparation and Characterization of a Dip‐Coated SnO2 Film for Transparent Electrodes for Transmissive Electrochromic Devices , 1993 .

[56]  M. Stranick,et al.  SnO by XPS , 1993 .

[57]  Lambin,et al.  Characterization of tin oxides by x-ray-photoemission spectroscopy. , 1992, Physical review. B, Condensed matter.

[58]  J. Watson,et al.  The tin oxide gas sensor and its applications , 1984 .

[59]  A. Rabenau,et al.  X-Ray and Optical Measurements in the In2O3-SnO2 System , 1979, March 16.

[60]  A. Rabenau,et al.  X-ray and optical measurements in the In2O3SnO2 system , 1979 .

[61]  John B. Goodenough,et al.  X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films , 1977 .