Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies

Author(s): Slepian, Z; Eisenstein, DJ; Brownstein, JR; Chuang, CH; Gil-Marin, H; Ho, S; Kitaura, FS; Percival, WJ; Ross, AJ; Rossi, G; Seo, HJ; Slosar, A; Vargas-Magana, M | Abstract: © 2017 The Authors. We present the large-scale three-point correlation function (3PCF) of the Sloan Digital Sky Survey DR12 Constant stellar Mass (CMASS) sample of 777 202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of baryon acoustic oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z = 0.57 to 1.7 per cent precision (statistical plus systematic). We find DV =2024±29 Mpc (stat)±20 Mpc (sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the twopoint correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10 per cent; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderatesignificance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.

[1]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[2]  J. Frieman,et al.  Constraints on galaxy bias, matter density, and primordial non-Gaussianity from the PSCz galaxy redshift survey. , 2000, Physical review letters.

[3]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[4]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[5]  Edwin Sirko,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .

[6]  D. Eisenstein,et al.  A simple analytic treatment of linear growth of structure with baryon acoustic oscillations , 2015, 1509.08199.

[7]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[8]  M. Kamionkowski,et al.  Two ways of biasing galaxy formation , 2000, astro-ph/0005544.

[9]  R. Sheth,et al.  Gravity and Large-Scale Nonlocal Bias , 2012, 1201.3614.

[10]  Christopher Hirata,et al.  Relative velocity of dark matter and baryonic fluids and the formation of the first structures , 2010, 1005.2416.

[11]  D. Eisenstein,et al.  Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms , 2015, 1506.04746.

[12]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[13]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[14]  The large-scale 3-point correlation function of the SDSS BOSS DR12 CMASS galaxies , 2015, 1607.06098.

[15]  W. Percival,et al.  Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field. , 2015, Physical review letters.

[16]  Wayne Hu,et al.  Redshifting rings of power , 2003, astro-ph/0306053.

[17]  Ashley J. Ross,et al.  The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: including covariance matrix errors , 2013, 1312.4841.

[18]  Donald P. Schneider,et al.  The power spectrum and bispectrum of SDSS DR11 BOSS galaxies – I. Bias and gravity , 2014, 1407.5668.

[19]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[20]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[21]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[22]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[23]  Francisco-Shu Kitaura,et al.  Cosmological structure formation with augmented Lagrangian perturbation theory , 2012, 1212.3514.

[24]  David Schlegel,et al.  SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large-scale structure catalogues , 2015, 1509.06529.

[25]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[26]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[27]  M. Schmittfull,et al.  Eulerian BAO Reconstructions and N-Point Statistics , 2015, 1508.06972.

[28]  A. Bolton,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release , 2015, 1509.06404.

[29]  Patrick McDonald,et al.  Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS , 2009, 0902.0991.

[30]  Eric V. Linder Baryon oscillations as a cosmological probe , 2003 .

[31]  Francisco-Shu Kitaura,et al.  Modelling baryon acoustic oscillations with perturbation theory and stochastic halo biasing , 2013, 1307.3285.

[32]  Shinji Tsujikawa,et al.  Dynamics of dark energy , 2006 .

[33]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[34]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[35]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[36]  A. Cuesta,et al.  A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations – II. Fitting techniques , 2012, 1202.0091.

[37]  D. Eisenstein,et al.  Computing the Three-Point Correlation Function of Galaxies in $\mathcal{O}(N^2)$ Time , 2015, 1506.02040.

[38]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[39]  J. Holtzman Microwave background anisotropies and large-scale structure in universes with cold dark matter, baryons, radiation, and massive and massless neutrinos , 1989 .

[40]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[41]  F. Kitaura,et al.  Constraining the halo bispectrum in real and redshift space from perturbation theory and non-linear stochastic bias , 2014, 1407.1236.

[42]  I. Szapudi Three-Point Statistics from a New Perspective , 2004, astro-ph/0404476.

[43]  The bias field of dark matter haloes , 1997, astro-ph/9708067.

[44]  D. Eisenstein,et al.  On the signature of the baryon–dark matter relative velocity in the two- and three-point galaxy correlation functions , 2014, 1411.4052.

[45]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release , 2015, 1509.06400.

[46]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[47]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.

[48]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[49]  Adam D. Myers,et al.  Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars , 2014, 1404.1801.

[50]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[51]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[52]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[53]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[54]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[55]  Zachary Slepian,et al.  Modelling the large-scale redshift-space 3-point correlation function of galaxies , 2016, 1607.03109.

[56]  Patrick McDonald Clustering of dark matter tracers: Renormalizing the bias parameters , 2006 .

[57]  R. Mehrem,et al.  The plane wave expansion, infinite integrals and identities involving spherical Bessel functions , 2009, Appl. Math. Comput..

[58]  G. W. Pratt,et al.  Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .

[59]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[60]  Joshua A. Frieman,et al.  The Bispectrum as a Signature of Gravitational Instability in Redshift Space , 1998, astro-ph/9808305.

[61]  H. Payne,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[62]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[63]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[64]  F. Castander,et al.  Clustering of luminous red galaxies – III. Baryon acoustic peak in the three-point correlation , 2008 .

[65]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[66]  J. Fry The Evolution of Bias , 1996 .

[67]  Berkeley,et al.  Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements , 2011, 1105.3732.

[68]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[69]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[70]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[71]  P. Mcdonald,et al.  Evidence for quadratic tidal tensor bias from the halo bispectrum , 2012, 1201.4827.

[72]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the correlation function of LOWZ and CMASS galaxies in Data Release 12 , 2015, 1509.06371.