Dynamic Maintenance of Half-Space Depth for Points and Contours

Half-space depth (also called Tukey depth or location depth) is one of the most commonly studied data depth measures because it possesses many desirable properties for data depth functions. The data depth contours bound regions of increasing depth. For the sample case, there are two competing definitions of contours: the rank-based contours and the cover-based contours. In this paper, we present three dynamic algorithms for maintaining the half-space depth of points and contours: The first maintains the half-space depth of a single point in a data set in $O(\log n)$ time per update (insertion/deletion) and overall linear space. By maintaining such a data structure for each data point, we present an algorithm for dynamically maintaining the rank-based contours in $O(n\cdot\log n)$ time per update and overall quadratic space. The third dynamic algorithm maintains the cover-based contours in $O(n\cdot \log^2 n)$ time per update and overall quadratic space. We also augment our first algorithm to maintain the local cover-based contours at data points while maintaining the same complexities. A corollary of this discussion is a strong structural result of independent interest describing the behavior of dynamic cover-based contours near data points.

[1]  Theodore Johnson,et al.  Fast Computation of 2-Dimensional Depth Contours , 1998, KDD.

[2]  Asish Mukhopadhyay,et al.  Computing a centerpoint of a finite planar set of points in linear time , 1993, SCG '93.

[3]  P. Rousseeuw,et al.  Bivariate location depth , 1996 .

[4]  P. Rousseeuw,et al.  High-dimensional computation of the deepest location , 2000 .

[5]  Timothy M. Chan An optimal randomized algorithm for maximum Tukey depth , 2004, SODA '04.

[6]  Komei Fukuda,et al.  Exact parallel algorithms for the location depth and the maximum feasible subsystem problems , 2004 .

[7]  Jirí Matousek,et al.  Dynamic half-space range reporting and its applications , 2005, Algorithmica.

[8]  Diane L. Souvaine,et al.  Simplicial depth: An improved definition, analysis, and efficiency for the finite sample case , 2003, CCCG.

[9]  P. Rousseeuw,et al.  The Bagplot: A Bivariate Boxplot , 1999 .

[10]  Pat Morin,et al.  Output-sensitive algorithms for Tukey depth and related problems , 2008, Stat. Comput..

[11]  Greg Aloupis,et al.  Geometric Measures of Data Depth , 2022 .

[12]  Richard Pollack,et al.  Discrete and Computational Geometry: Papers from the DIMACS Special Year , 1991, Discrete and Computational Geometry.

[13]  Bettina Speckmann,et al.  Efficient algorithms for maximum regression depth , 1999, SCG '99.

[14]  謙太郎 野間口,et al.  仮説に制約条件がある場合の Bivariate Sign Test , 1986 .

[15]  Stefan Langerman,et al.  Computing a maximal depth point in the plane , 2000 .

[16]  W. Eddy Convex Hull Peeling , 1982 .

[17]  Richard Cole,et al.  Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.

[18]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[19]  P. Rousseeuw,et al.  Constructing the bivariate Tukey median , 1998 .

[20]  Micha Sharir,et al.  Algorithms for center and Tverberg points , 2004, SCG '04.

[21]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[22]  J. Matou Sek,et al.  Computing the center of planar point sets , 1991 .

[23]  Stefan Langerman,et al.  Optimization in Arrangements , 2003, STACS.

[24]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[25]  Richard Cole,et al.  On k-hulls and related problems , 1984, STOC '84.

[26]  R. Connelly In Handbook of Convex Geometry , 1993 .

[27]  P. Rousseeuw,et al.  Computing depth contours of bivariate point clouds , 1996 .

[28]  R. Serfling,et al.  Structural properties and convergence results for contours of sample statistical depth functions , 2000 .

[29]  Greg Aloupis,et al.  Lower Bounds for Computing Statistical Depth , 2002 .

[30]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[31]  Joan Antoni Sellarès,et al.  Efficient computation of location depth contours by methods of computational geometry , 2003, Stat. Comput..

[32]  Herbert Edelsbrunner,et al.  Constructing Belts in Two-Dimensional Arrangements with Applications , 1986, SIAM J. Comput..

[33]  Jirí Matousek Computing the Center of Planar Point Sets , 1990, Discrete and Computational Geometry.

[34]  Nabil H. Mustafa,et al.  Hardware-assisted computation of depth contours , 2002, SODA '02.

[35]  Timothy M. Chan,et al.  Dynamic ham-sandwich cuts in the plane , 2009, Comput. Geom..

[36]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[37]  V. Barnett The Ordering of Multivariate Data , 1976 .