Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6

Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (30kb). Here, we designed a plasmid-based viral genome assembly and rescue strategy (pGLUE) that constructs complete infectious viruses or noninfectious subgenomic replicons in a single ligation reaction with >80% efficiency. Fully sequenced replicons and infectious viral stocks can be generated in 1 and 3 weeks, respectively. By testing a series of naturally occurring viruses as well as Delta-Omicron chimeric replicons, we show that Omicron nonstructural protein 6 harbors critical attenuating mutations, which dampen viral RNA replication and reduce lipid droplet consumption. Thus, pGLUE overcomes remaining barriers to broadly study SARS-CoV-2 replication and reveals deficits in nonstructural protein function underlying Omicron attenuation.

[1]  A. Ensser,et al.  Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation , 2023, Nature.

[2]  A. Ensser,et al.  Role of spike in the pathogenic and antigenic behavior of SARS-CoV-2 BA.1 Omicron , 2022, bioRxiv.

[3]  Hao Tan,et al.  Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir , 2022, bioRxiv.

[4]  J. Zahradník,et al.  Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5 , 2022, Cell.

[5]  Rommie E. Amaro,et al.  Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors , 2022, bioRxiv.

[6]  Qian Wang,et al.  Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75 , 2022, bioRxiv.

[7]  Fei Shao,et al.  BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection , 2022, Nature.

[8]  P. Klenerman,et al.  Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum , 2022, Cell.

[9]  J. Zahradník,et al.  Virological characteristics of the novel SARS-CoV-2 Omicron variants including BA.2.12.1, BA.4 and BA.5 , 2022, bioRxiv.

[10]  M. Diamond,et al.  Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2 , 2022, Nature.

[11]  Arvind H. Patel,et al.  The altered entry pathway and antigenic distance of the SARS-CoV-2 Omicron variant map to separate domains of spike protein , 2022, bioRxiv.

[12]  Samuel S. Shepard,et al.  SARS-CoV-2 Delta–Omicron Recombinant Viruses, United States , 2022, Emerging infectious diseases.

[13]  L. Giaquinto,et al.  The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle , 2022, Nature.

[14]  K. Ishii,et al.  Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike , 2022, Cell.

[15]  M. Beer,et al.  The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA.1 phenotype , 2022, bioRxiv.

[16]  A. Baiker,et al.  Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models , 2022, Virology Journal.

[17]  J. Andriesen,et al.  High Asymptomatic Carriage With the Omicron Variant in South Africa , 2022, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[18]  D. Guo,et al.  Reverse genetics systems for SARS‐CoV‐2 , 2022, Journal of medical virology.

[19]  P. Fournier,et al.  Culture and identification of a “Deltamicron” SARS‐CoV‐2 in a three cases cluster in southern France , 2022, medRxiv.

[20]  A. Stern,et al.  Drivers of adaptive evolution during chronic SARS-CoV-2 infections , 2022, Nature Medicine.

[21]  Vineet D. Menachery,et al.  A live-attenuated SARS-CoV-2 vaccine candidate with accessory protein deletions , 2022, Nature Communications.

[22]  Ruhong Yan,et al.  Omicron adopts a different strategy from Delta and other variants to adapt to host , 2022, Signal Transduction and Targeted Therapy.

[23]  B. Luan,et al.  Spike protein-independent attenuation of SARS-CoV-2 Omicron variant in laboratory mice , 2022, bioRxiv.

[24]  Frances E. Muldoon,et al.  Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity , 2022, Nature.

[25]  A. Kaneda,et al.  Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant , 2022, Nature.

[26]  M. Kemp,et al.  The P132H mutation in the main protease of Omicron SARS-CoV-2 decreases thermal stability without compromising catalysis or small-molecule drug inhibition , 2022, Cell Research.

[27]  R. Shafer,et al.  Selection analysis identifies unusual clustered mutational changes in Omicron lineage BA.1 that likely impact Spike function , 2022, bioRxiv.

[28]  T. House,et al.  OMICRON-ASSOCIATED CHANGES IN SARS-COV-2 SYMPTOMS IN THE UNITED KINGDOM , 2022, medRxiv.

[29]  K. To,et al.  The SARS-CoV-2 Omicron (B.1.1.529) variant exhibits altered pathogenicity, transmissibility, and fitness in the golden Syrian hamster model , 2022, bioRxiv.

[30]  Y. Kawaoka,et al.  Reduced pathogenicity of the SARS-CoV-2 omicron variant in hamsters , 2022, bioRxiv.

[31]  K. To,et al.  Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron , 2021, Nature.

[32]  Nasser,et al.  Virological characteristics of the novel SARS-CoV-2 Omicron variants 1 including BA . 2 , 2022 .

[33]  T. Ndung’u,et al.  Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization , 2021, Nature.

[34]  Fei Shao,et al.  Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies , 2021, bioRxiv.

[35]  J. Nie,et al.  The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron , 2021, Emerging microbes & infections.

[36]  L. Weinberger,et al.  Identification of a therapeutic interfering particle—A single-dose SARS-CoV-2 antiviral intervention with a high barrier to resistance , 2021, Cell.

[37]  Y. Liu,et al.  The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus , 2021, Journal of travel medicine.

[38]  J. Doudna,et al.  Rapid assessment of SARS-CoV-2–evolved variants using virus-like particles , 2021, bioRxiv.

[39]  D. O’Connor,et al.  Acute SARS-CoV-2 infections harbor limited within-host diversity and transmit via tight transmission bottlenecks , 2021, PLoS pathogens.

[40]  A. Pyke,et al.  A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses , 2021, Nature Communications.

[41]  M. Shi,et al.  A Convenient and Biosafe Replicon with Accessory Genes of SARS-CoV-2 and Its Potential Application in Antiviral Drug Discovery , 2021, Virologica Sinica.

[42]  J. Todd,et al.  SARS-CoV-2 within-host diversity and transmission , 2021, Science.

[43]  D. Robertson,et al.  A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research , 2021, PLoS biology.

[44]  Vineet D. Menachery,et al.  Engineering SARS-CoV-2 using a reverse genetic system , 2021, Nature Protocols.

[45]  Benji C. Bateman,et al.  Correlative Multi-scale Cryo-imaging Unveils SARS-CoV-2 Assembly and Egress , 2021, Research square.

[46]  Carl A. B. Pearson,et al.  Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England , 2021, Science.

[47]  G. Lohman,et al.  Rapid 40 kb genome construction from 52 parts , 2020, bioRxiv.

[48]  Jiaxing Zhang,et al.  A novel cell culture system modeling the SARS-CoV-2 life cycle , 2020, bioRxiv.

[49]  E. Koonin,et al.  Ongoing Global and Regional Adaptive Evolution of SARS-CoV-2 , 2020, bioRxiv.

[50]  W. Kamitani,et al.  Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction , 2020, bioRxiv.

[51]  Vladimir Potapov,et al.  Enabling one-pot Golden Gate assemblies of unprecedented complexity using data-optimized assembly design , 2020, PloS one.

[52]  Ralf Bartenschlager,et al.  Structures and distributions of SARS-CoV-2 spike proteins on intact virions , 2020, Nature.

[53]  F. Almazán,et al.  Rescue of SARS-CoV-2 from a single bacterial artificial chromosome , 2020, bioRxiv.

[54]  D. Fremont,et al.  Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. , 2020, SSRN.

[55]  Zhigang Wu,et al.  Molecular Architecture of the SARS-CoV-2 Virus , 2020, Cell.

[56]  Shinji Makino,et al.  An Infectious cDNA Clone of SARS-CoV-2 , 2020, Cell Host & Microbe.

[57]  J. Rocklöv,et al.  The reproductive number of COVID-19 is higher compared to SARS coronavirus , 2020, Journal of travel medicine.

[58]  J. Sidney,et al.  Cellular immune selection with hepatitis C virus persistence in humans , 2005, The Journal of experimental medicine.

[59]  G. Davies,et al.  Knowns and Unknowns , 2003 .

[60]  R. Baric,et al.  Systematic Assembly of a Full-Length Infectious cDNA of Mouse Hepatitis Virus Strain A59 , 2002, Journal of Virology.

[61]  Michael Bunce,et al.  Evolution and transmission of stable CTL escape mutations in HIV infection , 2001, Nature.

[62]  E. Gould,et al.  Infectious transcripts of tick-borne encephalitis virus, generated in days by RT-PCR. , 1995, Virology.

[63]  Rolf M. Zinkernagel,et al.  Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo , 1990, Nature.

[64]  P. Ahlquist,et al.  cDNA cloning and in vitro transcription of the complete brome mosaic virus genome , 1984, Molecular and cellular biology.