A Nonlinear Krylov Accelerator for the Boltzmann k-Eigenvalue Problem

We compare a variant of Anderson Mixing with the Jacobian-Free Newton-Krylov and Broyden methods applied to an instance of the k-eigenvalue formulation of the linear Boltzmann transport equation. We present evidence that one variant of Anderson Mixing finds solutions in the fewest number of iterations. We examine and strengthen theoretical results of Anderson Mixing applied to linear problems.

[1]  Jon A. Dahl PARTISN results for the OECD/NEA 3-D extension C5G7 MOX benchmark , 2006 .

[2]  Keith Miller,et al.  Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension , 1998, SIAM J. Sci. Comput..

[3]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[4]  Aravind Srinivasan,et al.  Provable algorithms for parallel generalized sweep scheduling , 2006, J. Parallel Distributed Comput..

[5]  Richard B. Lehoucq,et al.  Krylov Subspace Iterations for Deterministic k-Eigenvalue Calculations , 2004 .

[6]  D. A. Knoll,et al.  Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method , 2011 .

[7]  Dianne P. O'Leary,et al.  Complete stagnation of gmres , 2003 .

[8]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[9]  James S. Warsa,et al.  A Continuous Finite Element-Based, Discontinuous Finite Element Method for SN Transport , 2008 .

[10]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[11]  Jeffery D. Densmore,et al.  Newton’s Method for the Computation of k-Eigenvalues in SN Transport Applications , 2011 .

[12]  G. I. Bell,et al.  Nuclear Reactor Theory , 1952 .

[13]  V. Eyert A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences , 1996 .

[14]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[15]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[16]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[17]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[18]  Lawrence Rauchwerger,et al.  Parallel Sn Sweeps on Unstructured Grids: Algorithms for Prioritization, Grid Partitioning, and Cycle Detection , 2005 .

[19]  R. Baker,et al.  An Sn algorithm for the massively parallel CM-200 computer , 1998 .

[20]  A. Greenbaum,et al.  Matrices That Generate the Same Krylov Residual Spaces , 2015 .

[21]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[22]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[23]  Dana A. Knoll,et al.  Nonlinear Acceleration of Transport Criticality Problems , 2012 .

[24]  Allan F. Henry,et al.  Nuclear Reactor Analysis , 1977, IEEE Transactions on Nuclear Science.

[25]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[26]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[27]  Shawn D. Pautz,et al.  An Algorithm for Parallel Sn Sweeps on Unstructured Meshes , 2001 .

[28]  Yousry Y. Azmy,et al.  Newton’s Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory , 2011 .