A Nonlinear Krylov Accelerator for the Boltzmann k-Eigenvalue Problem
暂无分享,去创建一个
Markus Berndt | James S. Warsa | Neil N. Carlson | Matthew T. Calef | Erin D. Fichtl | N. Carlson | J. Warsa | M. Berndt | E. D. Fichtl | M. Calef
[1] Jon A. Dahl. PARTISN results for the OECD/NEA 3-D extension C5G7 MOX benchmark , 2006 .
[2] Keith Miller,et al. Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension , 1998, SIAM J. Sci. Comput..
[3] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[4] Aravind Srinivasan,et al. Provable algorithms for parallel generalized sweep scheduling , 2006, J. Parallel Distributed Comput..
[5] Richard B. Lehoucq,et al. Krylov Subspace Iterations for Deterministic k-Eigenvalue Calculations , 2004 .
[6] D. A. Knoll,et al. Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method , 2011 .
[7] Dianne P. O'Leary,et al. Complete stagnation of gmres , 2003 .
[8] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[9] James S. Warsa,et al. A Continuous Finite Element-Based, Discontinuous Finite Element Method for SN Transport , 2008 .
[10] Donald G. M. Anderson. Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.
[11] Jeffery D. Densmore,et al. Newton’s Method for the Computation of k-Eigenvalues in SN Transport Applications , 2011 .
[12] G. I. Bell,et al. Nuclear Reactor Theory , 1952 .
[13] V. Eyert. A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences , 1996 .
[14] Tamara G. Kolda,et al. An overview of the Trilinos project , 2005, TOMS.
[15] J. J. Moré,et al. A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .
[16] Homer F. Walker,et al. Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..
[17] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[18] Lawrence Rauchwerger,et al. Parallel Sn Sweeps on Unstructured Grids: Algorithms for Prioritization, Grid Partitioning, and Cycle Detection , 2005 .
[19] R. Baker,et al. An Sn algorithm for the massively parallel CM-200 computer , 1998 .
[20] A. Greenbaum,et al. Matrices That Generate the Same Krylov Residual Spaces , 2015 .
[21] Yousef Saad,et al. Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..
[22] E. Lewis,et al. Computational Methods of Neutron Transport , 1993 .
[23] Dana A. Knoll,et al. Nonlinear Acceleration of Transport Criticality Problems , 2012 .
[24] Allan F. Henry,et al. Nuclear Reactor Analysis , 1977, IEEE Transactions on Nuclear Science.
[25] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[26] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[27] Shawn D. Pautz,et al. An Algorithm for Parallel Sn Sweeps on Unstructured Meshes , 2001 .
[28] Yousry Y. Azmy,et al. Newton’s Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory , 2011 .