The probability ranking principle in IR

The principle that, for optimal retrieval, documents should be ranked in order of the probability of relevance or usefulness has been brought into question by Cooper. It is shown that the principle can be justified under certain assumptions, but that in cases where these assumptions do not hold, the principle is not valid. The major problem appears to lie in the way the principle considers each document independently of the rest. The nature of the information on the basis of which the system decides whether or not to retrieve the documents determines whether the document‐by‐document approach is valid.

[1]  M. E. Maron,et al.  On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.

[2]  W. S. Cooper Expected search length: A single measure of retrieval effectiveness based on the weak ordering action of retrieval systems , 1968 .

[3]  William Goffman,et al.  An indirect method of information retrieval , 1968, Inf. Storage Retr..

[4]  K. Sparck Jones,et al.  A TEST FOR THE SEPARATION OF RELEVANT AND NON‐RELEVANT DOCUMENTS IN EXPERIMENTAL RETRIEVAL COLLECTIONS , 1973 .

[5]  William S. Cooper,et al.  On selecting a measure of retrieval effectiveness , 1973, J. Am. Soc. Inf. Sci..

[6]  W. Bruce Croft,et al.  An evaluation of Goffman's indirect retrieval method , 1976, Inf. Process. Manag..

[7]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[8]  Clement T. Yu,et al.  On models of information retrieval processes , 1979, Inf. Syst..

[9]  M. E. Maron Depth of indexing , 1979, J. Am. Soc. Inf. Sci..

[10]  V. Stibic Influence of unlimited ranking on practical online search strategy , 1980 .

[11]  C. J. van Rijsbergen,et al.  The selection of good search terms , 1981, Inf. Process. Manag..

[12]  W. Bruce Croft Document representation in probabilistic models of information retrieval , 1981, J. Am. Soc. Inf. Sci..

[13]  V. M. Driyanskii Retrieval models in on-line documentary information systems: An analytic review , 1981 .

[14]  Tadeusz Radecki A probabilistic approach to information retrieval in systems with boolean search request formulations , 1982, J. Am. Soc. Inf. Sci..

[15]  Tadeusz Radecki A theoretical background for applying fuzzy set theory in information retrieval , 1983 .

[16]  William S. Cooper,et al.  Exploiting the maximum entropy principle to increase retrieval effectiveness , 1983, J. Am. Soc. Inf. Sci..

[17]  Tadeusz Radecki Generalized Boolean Methods of Information Retrieval , 1983, Int. J. Man Mach. Stud..

[18]  Peter Willett,et al.  An evaluation of document retrieval from serial files using the ICL Distributed Array Processor , 1984 .

[19]  M. H. Heine Sign detection theory and its applications , 1984, Inf. Process. Manag..

[20]  W. Bruce Croft Boolean Queries and Term Dependencies in Probabilistic Retrieval Models. , 1986 .

[21]  Peter Willett,et al.  INSTRUCT: a teaching package for experimental methods in information retrieval. Part I. The users view , 1986 .

[22]  Paul Thompson,et al.  An Inductive Search System: Theory, Design, and Implementation , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Tadeusz Radecki Trends in research on information retrieval -- The potential for improvements in conventional Boolean retrieval systems , 1988, Inf. Process. Manag..

[24]  William S. Cooper,et al.  Getting beyond Boole , 1988, Inf. Process. Manag..

[25]  Tadeusz Radecki,et al.  Probabilistic methods for ranking output documents in conventional Boolean retrieval systems , 1988, Inf. Process. Manag..

[26]  M. E. Maron Probabilistic design principles for conventional and full-text retrieval systems , 1988, Inf. Process. Manag..

[27]  Donald H. Kraft,et al.  Estimating effective display size in online retrieval systems , 1988, Inf. Process. Manag..

[28]  Vijay V. Raghavan,et al.  Integration of information retrieval and database management systems , 1988, Inf. Process. Manag..

[29]  Norbert Fuhr,et al.  Models for retrieval with probabilistic indexing , 1989, Inf. Process. Manag..

[30]  Vijay V. Raghavan,et al.  Extended Boolean query processing in the generalized vector space model , 1989, Inf. Syst..

[31]  W. Bruce Croft,et al.  Interactive retrieval of complex documents , 1990, Inf. Process. Manag..

[32]  Stephen E. Robertson,et al.  On Term Selection for Query Expansion , 1991, J. Documentation.

[33]  Chris D. Paice,et al.  A thesaural model of information retrieval , 1991, Inf. Process. Manag..

[34]  G Salton,et al.  Developments in Automatic Text Retrieval , 1991, Science.

[35]  Michael D. Gordon Ranking large document collections by a state space search , 1991, Inf. Process. Manag..

[36]  T. L. McCluskey,et al.  Incremental Learning in a Probalistic Information Retrieval System , 1991, ML.

[37]  Peter Willett,et al.  Using nearest‐neighbour searching techniques to access full‐text documents , 1991 .

[38]  W. John Wilbur,et al.  An information measure of retrieval performance , 1992, Inf. Syst..

[39]  Mark T. Keane,et al.  Effective retrieval in Hospital Information Systems: the use of context in answering queries to Patient Discharge Summaries , 1994, Artif. Intell. Medicine.

[40]  Yannis Manolopoulos,et al.  Binary ranking for the signature file method , 1994, Inf. Softw. Technol..

[41]  Robert M. Losee,et al.  Upper Bounds for Retrieval Performance and Their Use Measuring Performance and Generating Optimal Boolean Queries: Can It Get Any Better Than This? , 1994, Inf. Process. Manag..

[42]  Robert M. Losee Term Dependence: Truncating the Bahadur Lazarsfeld Expansion , 1994, Inf. Process. Manag..

[43]  Yannis Manolopoulos,et al.  Ranking the Validity of Block Candidacies in Signature Files , 1994, Inf. Sci..

[44]  Efthimis N. Efthimiadis,et al.  User Choices: A new Yardstick for the Evaluation of Ranking Algorithms for Interactive Query Expansion , 1995, Inf. Process. Manag..

[45]  William M. Shaw,et al.  Termrelevance Computations and Perfect Retrieval Performance , 1995, Inf. Process. Manag..

[46]  Jacques Savoy,et al.  A new probabilistic scheme for information retrieval in hypertext , 1995, New Rev. Hypermedia Multim..

[47]  W. John Wilbur,et al.  Human Subjectivity and Performance Limits in Document Retrieval , 1996, Inf. Process. Manag..

[48]  F Wiesman,et al.  Information retrieval: an overview of system characteristics. , 1997, International journal of medical informatics.

[49]  Zorana Ercegovac,et al.  The interpretations of library use in the age of digital libraries: Virtualizing the name , 1997 .

[50]  John Yearwood,et al.  Retrieving cases for treatment advice in nursing using text representation and structured text retrieval , 1997, Artif. Intell. Medicine.

[51]  Dick B. Simmons,et al.  Knowledge Conceptualization Tool , 1997, IEEE Trans. Knowl. Data Eng..

[52]  W. John Wilbur A comparison of group and individual performance among subject experts and untrained workers at the document retrieval task , 1998 .

[53]  David Bodoff A re-unification of two competing models for document retrieval , 1999 .