A probabilistic approach to explore human miRNA targetome by integrating miRNA-overexpression data and sequence information

MOTIVATION Systematic identification of microRNA (miRNA) targets remains a challenge. The miRNA overexpression coupled with genome-wide expression profiling is a promising new approach and calls for a new method that integrates expression and sequence information. RESULTS We developed a probabilistic scoring method called targetScore. TargetScore infers miRNA targets as the transformed fold-changes weighted by the Bayesian posteriors given observed target features. To this end, we compiled 84 datasets from Gene Expression Omnibus corresponding to 77 human tissue or cells and 113 distinct transfected miRNAs. Comparing with other methods, targetScore achieves significantly higher accuracy in identifying known targets in most tests. Moreover, the confidence targets from targetScore exhibit comparable protein downregulation and are more significantly enriched for Gene Ontology terms. Using targetScore, we explored oncomir-oncogenes network and predicted several potential cancer-related miRNA-messenger RNA interactions. AVAILABILITY AND IMPLEMENTATION TargetScore is available at Bioconductor: http://www.bioconductor.org/packages/devel/bioc/html/TargetScore.html.

[1]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[2]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[3]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[4]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[5]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[6]  Xuerui Yang,et al.  An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma , 2011, Cell.

[7]  Ziv Bar-Joseph,et al.  Inferring Interaction Networks using the IBP applied to microRNA Target Prediction , 2011, NIPS.

[8]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[9]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[10]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[11]  Chi-Ying F. Huang,et al.  miRTarBase: a database curates experimentally validated microRNA–target interactions , 2010, Nucleic Acids Res..

[12]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[13]  Nectarios Koziris,et al.  TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support , 2011, Nucleic Acids Res..

[14]  Christoph Dieterich,et al.  doRiNA: a database of RNA interactions in post-transcriptional regulation , 2011, Nucleic Acids Res..

[15]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[16]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[17]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[18]  C. Croce Causes and consequences of microRNA dysregulation in cancer , 2009, Nature Reviews Genetics.

[19]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[20]  Sean R. Davis,et al.  GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor , 2007, Bioinform..

[21]  Chris Sander,et al.  mRNA turnover rate limits siRNA and microRNA efficacy , 2010, Molecular systems biology.

[22]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[23]  Martin Reczko,et al.  Lost in translation: an assessment and perspective for computational microRNA target identification , 2009, Bioinform..

[24]  Thomas Lengauer,et al.  ROCR: visualizing classifier performance in R , 2005, Bioinform..

[25]  Doron Betel,et al.  Corrigendum: Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs , 2009 .

[26]  Brendan J. Frey,et al.  Bayesian Inference of MicroRNA Targets from Sequence and Expression Data , 2007, J. Comput. Biol..

[27]  C. Croce,et al.  SnapShot: MicroRNAs in Cancer , 2009, Cell.

[28]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[29]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[30]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[31]  C. Sander,et al.  Target mRNA abundance dilutes microRNA and siRNA activity , 2010, Molecular systems biology.

[32]  Yufei Huang,et al.  A Bayesian approach for identifying miRNA targets by combining sequence prediction and gene expression profiling , 2010, 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing.

[33]  Martin L. Miller,et al.  Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs , 2009, Nature Biotechnology.

[34]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[35]  Dong Yue,et al.  Improving performance of mammalian microRNA target prediction , 2010, BMC Bioinformatics.

[36]  Anton J. Enright,et al.  Detecting microRNA binding and siRNA off-target effects from expression data , 2008, Nature Methods.

[37]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[38]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.