Distributed Flexible Nonlinear Tensor Factorization
暂无分享,去创建一个
Zenglin Xu | Zoubin Ghahramani | Kai Zhang | Shandian Zhe | Pengyuan Wang | Kuang-chih Lee | Yuan Qi | Zenglin Xu | Zoubin Ghahramani | Kuang-chih Lee | Shandian Zhe | Y. Qi | Kai Zhang | Pengyuan Wang | Pengyuan Wang
[1] Yuan Qi,et al. DinTucker: Scaling up Gaussian process models on multidimensional arrays with billions of elements , 2013, ArXiv.
[2] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[3] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[4] Zenglin Xu,et al. Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis , 2011, ICML.
[5] Lawrence Carin,et al. Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors , 2015, UAI.
[6] Matthew Harding,et al. Scalable Probabilistic Tensor Factorization for Binary and Count Data , 2015, IJCAI.
[7] Carl E. Rasmussen,et al. Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models , 2014, NIPS.
[8] David B. Dunson,et al. Bayesian Conditional Tensor Factorizations for High-Dimensional Classification , 2013, Journal of the American Statistical Association.
[9] Christos Faloutsos,et al. GigaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries , 2012, KDD.
[10] Joshua B. Tenenbaum,et al. Modelling Relational Data using Bayesian Clustered Tensor Factorization , 2009, NIPS.
[11] T. Minka. Old and New Matrix Algebra Useful for Statistics , 2000 .
[12] Zenglin Xu,et al. Scalable Nonparametric Multiway Data Analysis , 2015, AISTATS.
[13] J. H. Choi,et al. DFacTo: Distributed Factorization of Tensors , 2014, NIPS.
[14] Zenglin Xu,et al. DinTucker: Scaling Up Gaussian Process Models on Large Multidimensional Arrays , 2016, AAAI.
[15] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[16] Charles Darwin,et al. Experiments , 1800, The Medical and physical journal.
[17] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[18] Tamir Hazan,et al. Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.
[19] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[20] Deepak Agarwal,et al. LASER: a scalable response prediction platform for online advertising , 2014, WSDM.
[21] Wei Chu,et al. Probabilistic Models for Incomplete Multi-dimensional Arrays , 2009, AISTATS.
[22] Tamara G. Kolda,et al. Scalable Tensor Factorizations for Incomplete Data , 2010, ArXiv.
[23] David B. Dunson,et al. Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors , 2014, ICML.
[24] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[25] Max Welling,et al. Asynchronous Distributed Learning of Topic Models , 2008, NIPS.
[26] T. Nipkow,et al. Probabilistic Models , 2004 .
[27] Zoubin Ghahramani,et al. Random function priors for exchangeable arrays with applications to graphs and relational data , 2012, NIPS.
[28] Peter D. Hoff,et al. Hierarchical multilinear models for multiway data , 2010, Comput. Stat. Data Anal..
[29] Alexander J. Smola,et al. An architecture for parallel topic models , 2010, Proc. VLDB Endow..
[30] Nasser M. Nasrabadi,et al. Pattern Recognition and Machine Learning , 2006, Technometrics.
[31] A. Davidson. Optimizing Shuffle Performance in Spark , 2013 .
[32] Neil D. Lawrence,et al. Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.
[33] Han Liu,et al. Provable sparse tensor decomposition , 2015, 1502.01425.