Shaping genetic alterations in human cancer: the p53 mutation paradigm.

[1]  L. Ellisen,et al.  p63 and p73 in human cancer: defining the network , 2007, Oncogene.

[2]  K. Sabapathy,et al.  The codon 72 polymorphism-specific effects of human p53 are absent in mouse cells: implications on generation of mouse models , 2007, Oncogene.

[3]  D. Sgroi,et al.  The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. , 2007, The Journal of clinical investigation.

[4]  V. Rotter,et al.  Transcription regulation by mutant p53 , 2007, Oncogene.

[5]  A. Fersht,et al.  Structure–function–rescue: the diverse nature of common p53 cancer mutants , 2007, Oncogene.

[6]  T. Iwakuma,et al.  Crippling p53 activities via knock-in mutations in mouse models , 2007, Oncogene.

[7]  T. Soussi p53 alterations in human cancer: more questions than answers , 2007, Oncogene.

[8]  T. Stiewe,et al.  The p53 family in differentiation and tumorigenesis , 2007, Nature Reviews Cancer.

[9]  A. Levine,et al.  A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans , 2007, Oncogene.

[10]  T. Jacks,et al.  Restoration of p53 function leads to tumour regression in vivo , 2007, Nature.

[11]  Carlos Cordon-Cardo,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2007, Nature.

[12]  J. Pietenpol,et al.  Transcriptional Programs Regulated by p63 in Normal Epithelium and Tumors , 2007, Cell cycle.

[13]  Michael A. Dyer,et al.  MDMX: from bench to bedside , 2007, Journal of Cell Science.

[14]  L. Vassilev,et al.  MDM2 inhibitors for cancer therapy. , 2007, Trends in molecular medicine.

[15]  Gerard I. Evan,et al.  Modeling the Therapeutic Efficacy of p53 Restoration in Tumors , 2006, Cell.

[16]  G. Wahl,et al.  Regulating the p53 pathway: in vitro hypotheses, in vivo veritas , 2006, Nature Reviews Cancer.

[17]  G. Evan,et al.  Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. , 2006, Cancer cell.

[18]  Michael A. Dyer,et al.  Inactivation of the p53 pathway in retinoblastoma , 2006, Nature.

[19]  Henning Tidow,et al.  Effects of Oncogenic Mutations and DNA Response Elements on the Binding of p53 to p53-binding Protein 2 (53BP2)* , 2006, Journal of Biological Chemistry.

[20]  M. Zvelebil,et al.  iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72–polymorphic p53 , 2006, Nature Genetics.

[21]  C. Prives,et al.  Mutant p53 gain of function: the NF-Y connection. , 2006, Cancer Cell.

[22]  Julie E Goodman,et al.  Association of breast cancer outcome with status of p53 and MDM2 SNP309. , 2006, Journal of the National Cancer Institute.

[23]  S. Elledge,et al.  ATM–Chk2–p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency , 2006, The EMBO journal.

[24]  A. Levine,et al.  MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. , 2006, Cancer research.

[25]  G. Wahl,et al.  A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. , 2006, Cancer cell.

[26]  K. Wiman,et al.  Strategies for therapeutic targeting of the p53 pathway in cancer , 2006, Cell Death and Differentiation.

[27]  M. Murphy,et al.  Polymorphisms in the p53 pathway , 2006, Oncogene.

[28]  O. Myklebost,et al.  Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Wei Gu,et al.  p53 ubiquitination: Mdm2 and beyond. , 2006, Molecular cell.

[30]  Han You,et al.  Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. , 2006, Genes & development.

[31]  D. Menendez,et al.  A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  B. Trink,et al.  p63 and p73: teammates or adversaries? , 2006, Cancer cell.

[33]  C. Ishioka,et al.  Locus-specific mutation databases: pitfalls and good practice based on the p53 experience , 2006, Nature Reviews Cancer.

[34]  P. Brennan,et al.  Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. , 2005, American journal of epidemiology.

[35]  A. Levine,et al.  Detection of functional single-nucleotide polymorphisms that affect apoptosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. Soussi The p53 pathway and human cancer , 2005, The British journal of surgery.

[37]  J. Manfredi,et al.  The continuing saga of p53--more sleepless nights ahead. , 2005, Molecular cell.

[38]  David P Lane,et al.  p53 isoforms can regulate p53 transcriptional activity. , 2005, Genes & development.

[39]  P. Hall,et al.  An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  W. Deppert,et al.  A Novel Human p53 Isoform Is an Essential Element of the ATR-Intra-S Phase Checkpoint , 2005, Cell.

[41]  Patrick Dumont,et al.  The Codon 47 Polymorphism in p53 Is Functionally Significant*[boxs] , 2005, Journal of Biological Chemistry.

[42]  T. Soussi,et al.  p53 mutation heterogeneity in cancer. , 2005, Biochemical and biophysical research communications.

[43]  Michelle R. Campbell,et al.  Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. Strong,et al.  Gain of Function of a p53 Hot Spot Mutation in a Mouse Model of Li-Fraumeni Syndrome , 2004, Cell.

[45]  T. Jacks,et al.  Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome , 2004, Cell.

[46]  A. Levine,et al.  A Single Nucleotide Polymorphism in the MDM2 Promoter Attenuates the p53 Tumor Suppressor Pathway and Accelerates Tumor Formation in Humans , 2004, Cell.

[47]  M. Protopopova,et al.  Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors , 2004, Nature Medicine.

[48]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[49]  S. Kato,et al.  Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. Gusterson,et al.  p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. , 2003, Cancer cell.

[51]  Petr Pancoska,et al.  p53 has a direct apoptogenic role at the mitochondria. , 2003, Molecular cell.

[52]  X. Wang,et al.  TP53 and liver carcinogenesis , 2003, Human mutation.

[53]  M. Murphy,et al.  The codon 72 polymorphic variants of p53 have markedly different apoptotic potential , 2003, Nature Genetics.

[54]  M. Oren,et al.  The p53-Mdm2 module and the ubiquitin system. , 2003, Seminars in cancer biology.

[55]  J. Qin,et al.  Parc A Cytoplasmic Anchor for p53 , 2003, Cell.

[56]  Francesca Storici,et al.  Differential Transactivation by the p53 Transcription Factor Is Highly Dependent on p53 Level and Promoter Target Sequence , 2002, Molecular and Cellular Biology.

[57]  W. El-Deiry,et al.  Tissue-specific induction of p53 targets in vivo. , 2002, Cancer research.

[58]  Ting Wang,et al.  Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites , 2002, Oncogene.

[59]  Ashok R Venkitaraman,et al.  Cancer Susceptibility and the Functions of BRCA1 and BRCA2 , 2002, Cell.

[60]  W. Mcdougal An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. , 2002, The Journal of urology.

[61]  R. Ribeiro,et al.  A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer , 2002, Nature Structural Biology.

[62]  Yong Liao,et al.  HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation , 2001, Nature Cell Biology.

[63]  Xin Lu,et al.  ASPP proteins specifically stimulate the apoptotic function of p53. , 2001, Molecular cell.

[64]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  L. Mayo,et al.  A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[66]  C. Prives,et al.  A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain , 2001, Molecular and Cellular Biology.

[67]  A. Yang,et al.  p63 and p73: p53 mimics, menaces and more , 2000, Nature Reviews Molecular Cell Biology.

[68]  A. Levine,et al.  Physical and Functional Interaction between p53 Mutants and Different Isoforms of p73* , 2000, The Journal of Biological Chemistry.

[69]  S. Hussain,et al.  p53 Tumor Suppressor Gene: At the Crossroads of Molecular Carcinogenesis, Molecular Epidemiology, and Human Risk Assessment , 2000, Annals of the New York Academy of Sciences.

[70]  B. Gusterson,et al.  A common polymorphism acts as an intragenic modifier of mutant p53 behaviour , 2000, Nature Genetics.

[71]  U. Moll,et al.  Cytoplasmically “Sequestered” Wild Type p53 Protein Is Resistant to Mdm2-mediated Degradation* , 1999, The Journal of Biological Chemistry.

[72]  Jijie Gu,et al.  p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage , 1999, Nature.

[73]  Reuven Agami,et al.  Interaction of c-Abl and p73α and their collaboration to induce apoptosis , 1999, Nature.

[74]  Antonio Costanzo,et al.  The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage , 1999, Nature.

[75]  B. Gusterson,et al.  Novel p53 mutants selected in BRCA-associated tumours which dissociate transformation suppression from other wild-type p53 functions , 1999, Oncogene.

[76]  C. Prives,et al.  p73 Function Is Inhibited by Tumor-Derived p53 Mutants in Mammalian Cells , 1999, Molecular and Cellular Biology.

[77]  R. Agami,et al.  Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. , 1999, Nature.

[78]  A. Riggs,et al.  The p53 codon 249 mutational hotspot in hepatocellular carcinoma is not related to selective formation or persistence of aflatoxin B1 adducts , 1998, Oncogene.

[79]  T. Soussi,et al.  p53 mutations in BRCA1-associated familial breast cancer , 1998, The Lancet.

[80]  L. Bracco,et al.  The requirement for the p53 proline‐rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression , 1998, The EMBO journal.

[81]  B. Gusterson,et al.  p53 mutations in BRCA1-associated familial breast cancer , 1997, The Lancet.

[82]  G. Prendergast,et al.  The polyproline region of p53 is required to activate apoptosis but not growth arrest , 1997, Oncogene.

[83]  P. Gruss,et al.  Transgenic mouse model for studying the transcriptional activity of the p53 protein: age‐ and tissue‐dependent changes in radiation‐induced activation during embryogenesis , 1997, The EMBO journal.

[84]  A. Levine,et al.  Identification of a novel p53 functional domain that is necessary for efficient growth suppression. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[85]  T. Iwama,et al.  Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. , 1996, Gastroenterology.

[86]  U. Moll,et al.  Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[87]  D. Lane,et al.  Coupling between gamma irradiation, p53 induction and the apoptotic response depends upon cell type in vivo. , 1995, Journal of cell science.

[88]  R. Birgander,et al.  Is p53 polymorphism maintained by natural selection? , 1994, Human heredity.

[89]  F. Ponchel,et al.  Hepatocarcinoma-specific mutant p53-249ser induces mitotic activity but has no effect on transforming growth factor beta 1-mediated apoptosis. , 1994, Cancer research.

[90]  T. Jacks,et al.  Sunburn and p53 in the onset of skin cancer , 1994, Nature.

[91]  C. Harris,et al.  Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. , 1993, American journal of human genetics.

[92]  J. Shay,et al.  A transcriptionally active DNA-binding site for human p53 protein complexes , 1992, Molecular and cellular biology.

[93]  K. Kinzler,et al.  Definition of a consensus binding site for p53 , 1992, Nature Genetics.

[94]  A. Puisieux,et al.  Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. , 1991, Cancer research.

[95]  V. Rotter,et al.  Molecular basis for heterogeneity of the human p53 protein , 1986, Molecular and cellular biology.