Modeling of temperature field and pool formation during linear laser welding of DP1000 steel

Abstract A rotary-Gauss body heat source was employed in the study to model the laser welding of DP1000 steel. The condition of heat dissipation during the welding has a significant effect on the temperature field as well as the shape and size of the laser weld. A series of welding experiments were performed, and good agreement was observed between the calculated weld dimensions and the experimental results. The microhardness values across the welded joint were measured to determine the range of the soft zone in the heat affected zone (HAZ) and simultaneously the temperature range experienced in this region. The results indicated that the soft zone significantly affects the mechanical performance of the welded joint. The width of the soft zone and its distance from the weld center increase with increasing laser power, while the width of the soft zone and its distance from the weld center decrease with increasing welding speed.