Random laser action from flexible biocellulose-based device
暂无分享,去创建一个
S. Ribeiro | A. Gomes | C. Araújo | H. Barud | Moliria V Santos | C. T. Dominguez | L. D. Melo | J. Schiavon | L. S. A. Melo
[1] Paras N. Prasad,et al. Introduction to Biophotonics , 2003 .
[2] G. Gigli,et al. Random laser emission from a paper-based device , 2013 .
[3] Arnan Mitchell,et al. Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures , 2012 .
[4] Dahe Liu,et al. White light emission with red-green-blue lasing action in a disordered system of nanoparticles , 2012 .
[5] Brandon Redding,et al. Speckle-free laser imaging using random laser illumination , 2011, Nature Photonics.
[6] Jian Du,et al. BACTERIAL CELLULOSE: A NATURAL NANOMATERIAL FOR BIOMEDICAL APPLICATIONS , 2011 .
[7] Seok Hyun Yun,et al. Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein. , 2011, Optics letters.
[8] Malte C. Gather,et al. Single-cell biological lasers , 2011 .
[9] A. Gomes,et al. Dependence of random laser emission on silver nanoparticle density in PMMA films containing rhodamine 6G , 2011 .
[10] S. Ribeiro,et al. Antimicrobial bacterial cellulose-silver nanoparticles composite membranes , 2011 .
[11] Mikhail A. Noginov,et al. Solid-State Random Lasers , 2010 .
[12] A. J. Jesus-Silva,et al. Random laser action in dye solutions containing Stöber silica nanoparticles , 2010 .
[13] Zhengbin Xu,et al. Random lasing in bone tissue. , 2010, Optics letters.
[14] L. Carlos,et al. Real time random laser properties of Rhodamine-doped di-ureasil hybrids. , 2010, Optics express.
[15] Diederik S. Wiersma,et al. Nano and random lasers , 2010 .
[16] R. Polson,et al. Cancerous tissue mapping from random lasing emission spectra , 2010 .
[17] Koji Fujita,et al. Coherent random lasers in weakly scattering polymer films containing silver nanoparticles , 2009 .
[18] S. Ribeiro,et al. Bacterial cellulose–silica organic–inorganic hybrids , 2008 .
[19] Koji Fujita,et al. Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles , 2008 .
[20] M. Noginov,et al. Single- and two-photon excitation of a GaAs random laser. , 2008, Optics letters.
[21] Diederik S. Wiersma,et al. The physics and applications of random lasers , 2008 .
[22] C. D. de Matos,et al. Random fiber laser. , 2007, Physical review letters.
[23] Dae Hong Jeong,et al. Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.
[24] Marek Kawecki,et al. The future prospects of microbial cellulose in biomedical applications. , 2007, Biomacromolecules.
[25] R. Brown,et al. Microbial cellulose--the natural power to heal wounds. , 2006, Biomaterials.
[26] L. Qi,et al. Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. , 2005, Chemical communications.
[27] Z. Valy Vardeny,et al. Random lasing in human tissues , 2004 .
[28] I. Sondi,et al. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. , 2004, Journal of colloid and interface science.
[29] Hui Cao,et al. Lasing in random media , 2003 .
[30] Dieter Klemm,et al. Bacterial synthesized cellulose — artificial blood vessels for microsurgery , 2001 .
[31] Robert P. H. Chang,et al. Random laser action in semiconductor powder , 1999 .
[32] S L Jacques,et al. Biological laser action. , 1996, Applied optics.
[33] Robert R. Alfano,et al. Mirrorless laser action from optically pumped dye-treated animal tissues , 1995 .
[34] N. Lawandy,et al. Laser action in strongly scattering media , 1994, Nature.